Induced hypothermia during resuscitation from hemorrhagic shock attenuates microvascular inflammation in the rat mesenteric microcirculation.
Ontology highlight
ABSTRACT: Microvascular inflammation occurs during resuscitation following hemorrhagic shock, causing multiple organ dysfunction and mortality. Preclinical evidence suggests that hypothermia may have some benefit in selected patients by decreasing this inflammation, but this effect has not been extensively studied. Intravital microscopy was used to visualize mesenteric venules of anesthetized rats in real time to evaluate leukocyte adherence and mast cell degranulation. Animals were randomly allocated to normotensive or hypotensive groups and further subdivided into hypothermic and normothermic resuscitation (n = 6 per group). Animals in the shock groups underwent mean arterial blood pressure reduction to 40 to 45 mmHg for 1 h via blood withdrawal. During the first 2 h following resuscitation by infusion of shed blood plus double that volume of normal saline, rectal temperature of the hypothermic groups was maintained at 32°C to 34°C, whereas the normothermic groups were maintained between 36°C to 38°C. The hypothermic group was then rewarmed for the final 2 h of resuscitation. Leukocyte adherence was significantly lower after 2 h of hypothermic resuscitation compared with normothermic resuscitation: (2.8 ± 0.8 vs. 8.3 ± 1.3 adherent leukocytes, P = 0.004). Following rewarming, leukocyte adherence remained significantly different between hypothermic and normothermic shock groups: (4.7 ± 1.2 vs. 9.5 ± 1.6 adherent leukocytes, P = 0.038). Mast cell degranulation index (MDI) was significantly decreased in the hypothermic (1.02 ± 0.04 MDI) versus normothermic (1.22 ± 0.07 MDI) shock groups (P = 0.038) after the experiment. Induced hypothermia during resuscitation following hemorrhagic shock attenuates microvascular inflammation in rat mesentery. Furthermore, this decrease in inflammation is carried over after rewarming takes place.
SUBMITTER: Coyan GN
PROVIDER: S-EPMC4236241 | biostudies-literature | 2014 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA