Unknown

Dataset Information

0

Highly Aligned Nanofibrous Scaffold Derived from Decellularized Human Fibroblasts.


ABSTRACT: Native tissues are endowed with a highly organized nanofibrous extracellular matrix (ECM) that directs cellular distribution and function. The objective of this study is to create a purely natural, uniform, and highly aligned nanofibrous ECM scaffold for potential tissue engineering applications. Synthetic nanogratings (130 nm in depth) were used to direct the growth of human dermal fibroblasts for up to 8 weeks, resulting in a uniform 70 ?m-thick fibroblast cell sheet with highly aligned cells and ECM nanofibers. A natural ECM scaffold with uniformly aligned nanofibers of 78 ± 9 nm in diameter was generated after removing the cellular components from the detached fibroblast sheet. The elastic modulus of the scaffold was well maintained after the decellularization process because of the preservation of elastin fibers. Reseeding human mesenchymal stem cells (hMSCs) showed the excellent capacity of the scaffold in directing and supporting cell alignment and proliferation along the underlying fibers. The scaffold's biocompatibility was further examined by an in vitro inflammation assay with seeded macrophages. The aligned ECM scaffold induced a significantly lower immune response compared to its unaligned counterpart, as detected by the pro-inflammatory cytokines secreted from macrophages. The aligned nanofibrous ECM scaffold holds great potential in engineering organized tissues.

SUBMITTER: Xing Q 

PROVIDER: S-EPMC4251501 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highly Aligned Nanofibrous Scaffold Derived from Decellularized Human Fibroblasts.

Xing Qi Q   Vogt Caleb C   Leong Kam W KW   Zhao Feng F  

Advanced functional materials 20140501 20


Native tissues are endowed with a highly organized nanofibrous extracellular matrix (ECM) that directs cellular distribution and function. The objective of this study is to create a purely natural, uniform, and highly aligned nanofibrous ECM scaffold for potential tissue engineering applications. Synthetic nanogratings (130 nm in depth) were used to direct the growth of human dermal fibroblasts for up to 8 weeks, resulting in a uniform 70 μm-thick fibroblast cell sheet with highly aligned cells  ...[more]

Similar Datasets

| S-EPMC8474106 | biostudies-literature
| S-EPMC6041318 | biostudies-literature
| S-EPMC5501312 | biostudies-literature
| S-EPMC9025569 | biostudies-literature
| S-EPMC3031749 | biostudies-literature
| S-EPMC10493503 | biostudies-literature
| S-EPMC4519873 | biostudies-literature
| S-EPMC7862698 | biostudies-literature
| S-EPMC8471675 | biostudies-literature
| S-EPMC6090559 | biostudies-literature