Heritability of head motion during resting state functional MRI in 462 healthy twins.
Ontology highlight
ABSTRACT: Head motion (HM) is a critical confounding factor in functional MRI. Here we investigate whether HM during resting state functional MRI (RS-fMRI) is influenced by genetic factors in a sample of 462 twins (65% female; 101 MZ (monozygotic) and 130 DZ (dizygotic) twin pairs; mean age: 21 (SD = 3.16), range 16-29). Heritability estimates for three HM components-mean translation (MT), maximum translation (MAXT) and mean rotation (MR)-ranged from 37 to 51%. We detected a significant common genetic influence on HM variability, with about two-thirds (genetic correlations range 0.76-1.00) of the variance shared between MR, MT and MAXT. A composite metric (HM-PC1), which aggregated these three, was also moderately heritable (h(2) = 42%). Using a sub-sample (N = 35) of the twins we confirmed that mean and maximum translational and rotational motions were consistent "traits" over repeated scans (r = 0.53-0.59); reliability was even higher for the composite metric (r = 0.66). In addition, phenotypic and cross-trait cross-twin correlations between HM and resting state functional connectivities (RS-FCs) with Brodmann areas (BA) 44 and 45, in which RS-FCs were found to be moderately heritable (BA44: h(2) = 0.23 (sd = 0.041), BA45: h(2) = 0.26 (sd = 0.061)), indicated that HM might not represent a major bias in genetic studies using FCs. Even so, the HM effect on FC was not completely eliminated after regression. HM may be a valuable endophenotype whose relationship with brain disorders remains to be elucidated.
SUBMITTER: Couvy-Duchesne B
PROVIDER: S-EPMC4252775 | biostudies-literature | 2014 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA