A weighted multipath measurement based on gene ontology for estimating gene products similarity.
Ontology highlight
ABSTRACT: Many different methods have been proposed for calculating the semantic similarity of term pairs based on gene ontology (GO). Most existing methods are based on information content (IC), and the methods based on IC are used more commonly than those based on the structure of GO. However, most IC-based methods not only fail to handle identical annotations but also show a strong bias toward well-annotated proteins. We propose a new method called weighted multipath measurement (WMM) for estimating the semantic similarity of gene products based on the structure of the GO. We not only considered the contribution of every path between two GO terms but also took the depth of the lowest common ancestors into account. We assigned different weights for different kinds of edges in GO graph. The similarity values calculated by WMM can be reused because they are only relative to the characteristics of GO terms. Experimental results showed that the similarity values obtained by WMM have a higher accuracy. We compared the performance of WMM with that of other methods using GO data and gene annotation datasets for yeast and humans downloaded from the GO database. We found that WMM is more suited for prediction of gene function than most existing IC-based methods and that it can distinguish proteins with identical annotations (two proteins are annotated with the same terms) from each other.
SUBMITTER: Liu L
PROVIDER: S-EPMC4253309 | biostudies-literature | 2014 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA