Unknown

Dataset Information

0

Structure-guided development of deoxycytidine kinase inhibitors with nanomolar affinity and improved metabolic stability.


ABSTRACT: Recently, we have shown that small molecule dCK inhibitors in combination with pharmacological perturbations of de novo dNTP biosynthetic pathways could eliminate acute lymphoblastic leukemia cells in animal models. However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic properties. We delineated the sites of the inhibitor for modification, guided by crystal structures of dCK in complex with the lead compound and with derivatives. Crystal structure of the complex between dCK and the racemic mixture of our new lead compound indicated that the R-isomer is responsible for kinase inhibition. This was corroborated by kinetic analysis of the purified enantiomers, which showed that the R-isomer has >60-fold higher affinity than the S-isomer for dCK. This new lead compound has significantly improved metabolic stability, making it a prime candidate for dCK-inhibitor based therapies against hematological malignancies and, potentially, other cancers.

SUBMITTER: Nomme J 

PROVIDER: S-EPMC4255734 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure-guided development of deoxycytidine kinase inhibitors with nanomolar affinity and improved metabolic stability.

Nomme Julian J   Li Zheng Z   Gipson Raymond M RM   Wang Jue J   Armijo Amanda L AL   Le Thuc T   Poddar Soumya S   Smith Tony T   Santarsiero Bernard D BD   Nguyen Hien-Anh HA   Czernin Johannes J   Alexandrova Anastassia N AN   Jung Michael E ME   Radu Caius G CG   Lavie Arnon A  

Journal of medicinal chemistry 20141107 22


Recently, we have shown that small molecule dCK inhibitors in combination with pharmacological perturbations of de novo dNTP biosynthetic pathways could eliminate acute lymphoblastic leukemia cells in animal models. However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic properties. We delineated the sites of the inhibitor for modification, guided by crystal structures of dCK in complex with the lead compou  ...[more]

Similar Datasets

| S-EPMC7659979 | biostudies-literature
| S-EPMC3919262 | biostudies-literature
| S-EPMC3743924 | biostudies-literature
| S-EPMC4025639 | biostudies-literature
| S-EPMC4516226 | biostudies-literature
| S-EPMC6261342 | biostudies-literature
| S-EPMC9558494 | biostudies-literature
| S-EPMC3924305 | biostudies-literature
| S-EPMC8757511 | biostudies-literature
| S-EPMC4027555 | biostudies-literature