Unknown

Dataset Information

0

Dynamic scenario of membrane binding process of kalata b1.


ABSTRACT: Kalata B1 (kB1), a cyclotide that has been used in medical applications, displays cytotoxicity related to membrane binding and oligomerization. Our molecular dynamics simulation results demonstrate that Trp19 in loop 5 of both monomeric and tetrameric kB1 is a key residue for initial anchoring in the membrane binding process. This residue also facilitates the formation of kB1 tetramers. Additionally, we elucidate that kB1 preferentially binds to the membrane interfacial zone and is unable to penetrate into the membrane. In particular, significant roles of amino acid residues in loop 5 and loop 6 on the localization of kB1 to this membrane-water interface zone are found. This study reveals the roles of amino acid residues in the bioactivity of kB1, which is information that can be useful for designing new therapeutic cyclotides with less toxicity.

SUBMITTER: Nawae W 

PROVIDER: S-EPMC4256454 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic scenario of membrane binding process of kalata b1.

Nawae Wanapinun W   Hannongbua Supa S   Ruengjitchatchawalya Marasri M  

PloS one 20141204 12


Kalata B1 (kB1), a cyclotide that has been used in medical applications, displays cytotoxicity related to membrane binding and oligomerization. Our molecular dynamics simulation results demonstrate that Trp19 in loop 5 of both monomeric and tetrameric kB1 is a key residue for initial anchoring in the membrane binding process. This residue also facilitates the formation of kB1 tetramers. Additionally, we elucidate that kB1 preferentially binds to the membrane interfacial zone and is unable to pen  ...[more]

Similar Datasets

| S-EPMC3910381 | biostudies-literature
| S-EPMC5472625 | biostudies-literature
| S-EPMC3129204 | biostudies-literature
| S-EPMC3431668 | biostudies-literature
| S-EPMC3504764 | biostudies-literature
| S-EPMC5340158 | biostudies-literature
| S-EPMC5340158 | biostudies-literature
| S-EPMC5340158 | biostudies-literature
| S-EPMC6364095 | biostudies-literature
| S-EPMC2742835 | biostudies-literature