Project description:A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.
Project description:After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.
Project description:Rift valley fever (RVF) is a mosquito-borne disease of domestic and wild ruminants caused by RVF virus (RVFV), a phlebovirus (Bunyaviridae). RVF is widespread in Sub-Saharan Africa. In September of 2010, an RVF outbreak occurred in northern Mauritania involving mass abortions in small ruminants and camels (Camelus dromedarius) and at least 63 human clinical cases, including 13 deaths. In camels, serological prevalence was 27.5-38.5% (95% confidence interval, n=279). For the first time, clinical signs other than abortions were reported in this species, including hemorrhagic septicemia and severe respiratory distress in animals. We assessed the presence of RVFV in camel sera sampled during this outbreak and generated whole-genome sequences of RVFV to determine the possible origin of this RVFV strain. Phylogenetic analyses suggested a shared ancestor between the Mauritania 2010 strain and strains from Zimbabwe (2269, 763, and 2373), Kenya (155_57 and 56IB8), South Africa (Kakamas, SA75 and SA51VanWyck), Uganda (Entebbe), and other strains linked to the 1987 outbreak of RVF in Mauritania (OS1, OS3, OS8, and OS9).
Project description:In October 2003, 9 human cases of hemorrhagic fever were reported in 3 provinces of Mauritania, West Africa. Test results showed acute Rift Valley fever virus (RVFV) infection, and a field investigation found recent circulation of RVFV with a prevalence rate of 25.5% (25/98) and 4 deaths among the 25 laboratory-confirmed case-patients. Immunoglobulin M against RVFV was found in 46% (25/54) of domestic animals. RVFV was also isolated from the mosquito species Culex poicilipes. Genetic comparison of virion segments indicated little variation among the strains isolated. However, phylogenetic studies clearly demonstrated that these strains belonged to the East-Central African lineage for all segments. To our knowledge, this is the first time viruses of this lineage have been observed in an outbreak in West Africa. Whether these strains were introduced or are endemic in West Africa remains to be determined.
Project description:BackgroundRift Valley fever (RVF) is an acute viral anthropozoonosis that causes epizootics and epidemics among livestock population and humans. Multiple emergences and reemergences of the virus have occurred in Mauritania over the last decade. This article describes the outbreak that occurred in 2015 in Mauritania and reports the results of serological and molecular investigations of blood samples collected from suspected RVF patients.MethodsAn RVF outbreak was reported from 14 September to 26 November 2015 in Mauritania. Overall, 184 suspected cases from different localities were identified by 26 health facilities. Blood samples were collected and tested by enzyme-linked immunosorbent assay (ELISA) and real-time reverse-transcription polymerase chain reaction (RT-PCR) at the Institut Pasteur de Dakar (IPD). Sequencing of partial genomes and phylogenetic analyses were performed on RT-PCR-positive samples. As part of routine surveillance at IPD, samples were also screened for dengue, yellow fever, West Nile, Crimean Congo hemorrhagic fever, Zika, and Chikungunya viruses by ELISA and RT-PCR.ResultsOf the 184 suspected cases, there were 57 confirmed cases and 12 deaths. Phylogenetic analysis of the sequences indicated an emergence of a virus that originated from Northeastern Africa. Our results show co-circulation of other arboviruses in Mauritania-dengue, Crimean Congo hemorrhagic fever, and West Nile viruses.ConclusionThe Northeastern Africa lineage of RVF was responsible for the outbreak in Mauritania in 2015. Co-circulation of multiples arboviruses was detected. This calls for systematic differential diagnosis and highlights the need to strengthen arbovirus surveillance in Africa.
Project description:Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-?, IL-12 and other proinflammatory cytokines but not IFN-?. Despite the lack of IFN-?, innate immunity via the IL-12 to IFN-? circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings.
Project description:During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.
Project description:Ngari virus (NRIV) has been mostly detected during concurrent outbreaks of Rift Valley fever virus (RVFV). NRIV is grouped in the genus Orthobunyavirus within the Bunyaviridae family and RVFV in the genus Phlebovirus in the family Phenuiviridae. Both are zoonotic arboviruses and can induce hemorrhagic fever displaying the same clinical picture in humans and small ruminants. To investigate if NRIV and its parental viruses, Bunyamwera virus (BUNV) and Batai virus (BATV), played a role during the Mauritanian RVF outbreak in 2015/16, we analyzed serum samples of sheep and goats from central and southern regions in Mauritania by quantitative real-time RT-PCR, serum neutralization test (SNT) and ELISA. 41 of 458 samples exhibited neutralizing reactivity against NRIV, nine against BATV and three against BUNV. Moreover, complete virus genomes from BUNV could be recovered from two sheep as well as two NRIV isolates from a goat and a sheep. No RVFV-derived viral RNA was detected, but 81 seropositive animals including 22 IgM-positive individuals were found. Of these specimens, 61 samples revealed antibodies against RVFV and at least against one of the three orthobunyaviruses. An indirect ELISA based on NRIV/BATV and BUNV derived Gc protein was established as complement to SNT, which showed high performance regarding NRIV, but decreased sensitivity and specificity regarding BATV and BUNV. Moreover, we observed high cross-reactivity among NRIV and BATV serological assays. Taken together, the data indicate the co-circulation of at least BUNV and NRIV in the Mauritanian sheep and goat populations.