Molecular architecture of the ?? T cell receptor-CD3 complex.
Ontology highlight
ABSTRACT: ?? T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3??, CD3??, and CD3?? dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR-CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR-CD3 complex. Small-angle X-ray scattering of the soluble TCR-CD3?? complex reveals the CD3?? ECDs to sit underneath the TCR ?-chain. The observed arrangement is consistent with EM images of the entire TCR-CD3 integral membrane complex, in which the CD3?? and CD3?? subunits were situated underneath the TCR ?-chain and TCR ?-chain, respectively. Interestingly, the TCR-CD3 transmembrane complex bound to peptide-MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR-CD3 complex, and provides a conceptual framework for the TCR activation mechanism.
SUBMITTER: Birnbaum ME
PROVIDER: S-EPMC4267357 | biostudies-literature | 2014 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA