Connecting thermal and mechanical protein (un)folding landscapes.
Ontology highlight
ABSTRACT: Molecular dynamics simulations supplement single-molecule pulling experiments by providing the possibility of examining the full free energy landscape using many coordinates. Here, we use an all-atom structure-based model to study the force and temperature dependence of the unfolding of the protein filamin by applying force at both termini. The unfolding time-force relation ?(F) indicates that the force-induced unfolding behavior of filamin can be characterized into three regimes: barrier-limited low- and intermediate-force regimes, and a barrierless high-force regime. Slope changes of ?(F) separate the three regimes. We show that the behavior of ?(F) can be understood from a two-dimensional free energy landscape projected onto the extension X and the fraction of native contacts Q. In the low-force regime, the unfolding rate is roughly force-independent due to the small (even negative) separation in X between the native ensemble and transition state ensemble (TSE). In the intermediate-force regime, force sufficiently separates the TSE from the native ensemble such that ?(F) roughly follows an exponential relation. This regime is typically explored by pulling experiments. While X may fail to resolve the TSE due to overlap with the unfolded ensemble just below the folding temperature, the overlap is minimal at lower temperatures where experiments are likely to be conducted. The TSE becomes increasingly structured with force, whereas the average order of structural events during unfolding remains roughly unchanged. The high-force regime is characterized by barrierless unfolding, and the unfolding time approaches a limit of ?10 ?s for the highest forces we studied. Finally, a combination of X and Q is shown to be a good reaction coordinate for almost the entire force range.
SUBMITTER: Sun L
PROVIDER: S-EPMC4269773 | biostudies-literature | 2014 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA