Multiple independent IgE epitopes on the highly allergenic grass pollen allergen Phl p 5.
Ontology highlight
ABSTRACT: BACKGROUND:Group 5 allergens are small proteins that consist of two domains. They belong to the most potent respiratory allergens. OBJECTIVE:To determine the binding sites and to study allergic patients' IgE recognition of the group 5 allergen (Phl p 5) from timothy grass pollen using human monoclonal IgE antibodies that have been isolated from grass pollen allergic patients. METHODS:Using recombinant isoallergens, fragments, mutants and synthetic peptides of Phl p 5, as well as peptide-specific antibodies, the interaction of recombinant human monoclonal IgE and Phl p 5 was studied using direct binding and blocking assays. Cross-reactivity of monoclonal IgE with group 5 allergens in several grasses was studied and inhibition experiments with patients' polyclonal IgE were performed. RESULTS:Monoclonal human IgE showed extensive cross-reactivity with group 5 allergens in several grasses. Despite its small size of 29 kDa, four independent epitope clusters on isoallergen Phl p 5.0101, two in each domain, were recognized by human IgE. Isoallergen Phl p 5.0201 carried two of these epitopes. Inhibition studies with allergic patients' polyclonal IgE suggest the presence of additional IgE epitopes on Phl p 5. CONCLUSIONS & CLINICAL RELEVANCE:Our results reveal the presence of a large number of independent IgE epitopes on the Phl p 5 allergen explaining the high allergenic activity of this protein and its ability to induce severe allergic symptoms. High-density IgE recognition may be a general feature of many potent allergens and form a basis for the development of improved diagnostic and therapeutic procedures in allergic disease.
SUBMITTER: Levin M
PROVIDER: S-EPMC4278554 | biostudies-literature | 2014 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA