Immunogenicity of a bovine herpesvirus 1 glycoprotein D DNA vaccine complexed with bovine neutrophil beta-defensin 3.
Ontology highlight
ABSTRACT: Protective efficacy against bovine herpesvirus 1 (BoHV-1) has been demonstrated to be induced by a plasmid encoding bovine neutrophil beta-defensin 3 (BNBD3) as a fusion construct with truncated glycoprotein D (tgD). However, in spite of the increased cell-mediated immune responses induced by this DNA vaccine, the clinical responses of BoHV-1-challenged cattle were not reduced over those observed in animals vaccinated with the plasmid encoding tgD alone; this might have been because the vaccine failed to improve humoral responses. We hypothesized that an alternative vaccine design strategy that utilized the DNA vaccine pMASIA-tgD as a complex with BNBD3 might improve humoral responses while maintaining robust Th1-type cell-mediated responses. C57BL/6 mice were vaccinated with pMASIA-tgD complexed with 0, 0.01875, 0.1875, or 1.875 nmol of a stable synthesized analog of BNBD3 (aBNBD3). The best results were seen in mice immunized with the vaccine composed of pMASIA-tgD complexed to 0.1875 nmol aBNBD3. In this group, humoral responses were improved, as evidenced by increased virus neutralization, tgD-specific early IgG1, and later IgG2a titers, while the strong cell-mediated immune responses, measured based on specific gamma interferon (IFN-?)-secreting cells, were maintained relative to pMASIA-tgD. Modulation of the immune response might have been due in part to the effect of BNBD3 on dendritic cells (DCs). In vitro studies showed that murine bone marrow-derived DCs (BMDCs) pretreated with aBNBD3 were activated, as evidenced by CD11c downregulation, and were functionally mature, as shown by increased allostimulatory ability. Native, synthetic, and analog forms of BNBD3 were equally capable of inducing functional maturation of BMDCs.
SUBMITTER: Mackenzie-Dyck S
PROVIDER: S-EPMC4278921 | biostudies-literature | 2015 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA