Unknown

Dataset Information

0

Crystal structure of a TSH receptor monoclonal antibody: insight into Graves' disease pathogenesis.


ABSTRACT: The TSH receptor (TSHR) A-subunit is more effective than the holoreceptor in inducing thyroid-stimulating antibodies (TSAb) that cause Graves' disease. A puzzling phenomenon is that 2 recombinant, eukaryotic forms of A-subunits (residues 22-289), termed active and inactive, are recognized mutually exclusively by pathogenic TSAb and mouse monoclonal antibody 3BD10, respectively. Understanding the structural difference between these TSHR A-subunit forms could provide insight into Graves' disease pathogenesis. The 3-dimensional structure of the active A-subunit (in complex with a human TSAb Fab, M22) is known, but the structural difference with inactive A-subunits is unknown. We solved the 3BD10 Fab 3-dimensional crystal structure. Guided by prior knowledge of a portion of its epitope, 3BD10 docked in silico with the known active TSHR-289 monomeric structure. Because both TSAb and 3BD10 recognize the active TSHR A-subunit monomer, this form of the molecule can be excluded as the basis for the active-inactive dichotomy, suggesting, instead a role for A-subunit quaternary structure. Indeed, in silico analysis revealed that M22, but not 3BD10, bound to a TSHR-289 trimer. In contrast, 3BD10, but not M22, bound to a TSHR-289 dimer. The validity of these models is supported experimentally by the temperature-dependent balance between active and inactive TSHR-289. In summary, we provide evidence for a structural basis to explain the conformational heterogeneity of TSHR A-subunits (TSHR-289). The pathophysiologic importance of these findings is that affinity maturation of pathogenic TSAb in Graves' disease is likely to involve a trimer of the shed TSHR A-subunit.

SUBMITTER: Chen CR 

PROVIDER: S-EPMC4280529 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystal structure of a TSH receptor monoclonal antibody: insight into Graves' disease pathogenesis.

Chen Chun-Rong CR   Hubbard Paul A PA   Salazar Larry M LM   McLachlan Sandra M SM   Murali Ramachandran R   Rapoport Basil B  

Molecular endocrinology (Baltimore, Md.) 20150101 1


The TSH receptor (TSHR) A-subunit is more effective than the holoreceptor in inducing thyroid-stimulating antibodies (TSAb) that cause Graves' disease. A puzzling phenomenon is that 2 recombinant, eukaryotic forms of A-subunits (residues 22-289), termed active and inactive, are recognized mutually exclusively by pathogenic TSAb and mouse monoclonal antibody 3BD10, respectively. Understanding the structural difference between these TSHR A-subunit forms could provide insight into Graves' disease p  ...[more]

Similar Datasets

| S-EPMC4891793 | biostudies-literature
| S-EPMC3048317 | biostudies-literature
| S-EPMC3281106 | biostudies-literature
| S-EPMC10912279 | biostudies-literature
| S-EPMC6482584 | biostudies-literature
| S-EPMC4454809 | biostudies-literature
| S-EPMC2857451 | biostudies-literature
| S-EPMC7819272 | biostudies-literature
| S-EPMC6043401 | biostudies-literature
| S-EPMC8212124 | biostudies-literature