Unknown

Dataset Information

0

Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.


ABSTRACT: Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1?+?3?+?12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice.

SUBMITTER: Ayano M 

PROVIDER: S-EPMC4282320 | biostudies-literature | 2014 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

Ayano Madoka M   Kani Takahiro T   Kojima Mikiko M   Sakakibara Hitoshi H   Kitaoka Takuya T   Kuroha Takeshi T   Angeles-Shim Rosalyn B RB   Kitano Hidemi H   Nagai Keisuke K   Ashikari Motoyuki M  

Plant, cell & environment 20140624 10


Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin  ...[more]

Similar Datasets

| S-EPMC5645499 | biostudies-literature
| S-EPMC3405962 | biostudies-literature
| S-EPMC3504492 | biostudies-literature
| S-EPMC4623039 | biostudies-other
| S-EPMC17253 | biostudies-literature
2018-11-30 | GSE90493 | GEO
| S-EPMC6930552 | biostudies-literature
| S-EPMC23317 | biostudies-literature
| S-EPMC6689044 | biostudies-literature
| S-EPMC10341765 | biostudies-literature