Unknown

Dataset Information

0

A toolkit for measurement error correction, with a focus on nutritional epidemiology.


ABSTRACT: Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset.

SUBMITTER: Keogh RH 

PROVIDER: S-EPMC4285313 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A toolkit for measurement error correction, with a focus on nutritional epidemiology.

Keogh Ruth H RH   White Ian R IR  

Statistics in medicine 20140204 12


Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in man  ...[more]

Similar Datasets

| S-EPMC4775438 | biostudies-literature
| S-EPMC3169665 | biostudies-literature
| S-EPMC3143422 | biostudies-literature
| S-EPMC5606038 | biostudies-literature
| S-EPMC5378630 | biostudies-literature
| S-EPMC2733173 | biostudies-literature
| S-EPMC2809827 | biostudies-literature
| S-EPMC7529276 | biostudies-literature
| S-EPMC10144664 | biostudies-literature
| S-EPMC4276494 | biostudies-literature