Unknown

Dataset Information

0

SparseNet: Coordinate Descent With Nonconvex Penalties.


ABSTRACT: We address the problem of sparse selection in linear models. A number of nonconvex penalties have been proposed in the literature for this purpose, along with a variety of convex-relaxation algorithms for finding good solutions. In this article we pursue a coordinate-descent approach for optimization, and study its convergence properties. We characterize the properties of penalties suitable for this approach, study their corresponding threshold functions, and describe a df-standardizing reparametrization that assists our pathwise algorithm. The MC+ penalty is ideally suited to this task, and we use it to demonstrate the performance of our algorithm. Certain technical derivations and experiments related to this article are included in the Supplementary Materials section.

SUBMITTER: Mazumder R 

PROVIDER: S-EPMC4286300 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>SparseNet</i>: Coordinate Descent With Nonconvex Penalties.

Mazumder Rahul R   Friedman Jerome H JH   Hastie Trevor T  

Journal of the American Statistical Association 20110101 495


We address the problem of sparse selection in linear models. A number of nonconvex penalties have been proposed in the literature for this purpose, along with a variety of convex-relaxation algorithms for finding good solutions. In this article we pursue a coordinate-descent approach for optimization, and study its convergence properties. We characterize the properties of penalties suitable for this approach, study their corresponding threshold functions, and describe a <i>df</i>-standardizing r  ...[more]

Similar Datasets

| S-EPMC8025800 | biostudies-literature
| S-EPMC4826549 | biostudies-literature
| S-EPMC2323867 | biostudies-literature
| S-EPMC1192790 | biostudies-literature
| S-EPMC9292988 | biostudies-literature
| S-EPMC7113298 | biostudies-literature
| S-EPMC7566556 | biostudies-literature
| S-EPMC6091554 | biostudies-literature
| S-EPMC6274626 | biostudies-literature
| S-EPMC5354471 | biostudies-literature