A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets.
Ontology highlight
ABSTRACT: There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide-lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet's primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF's D'-D3 domain while natural platelet GPIb? binds to VWF's A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF's A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP.
SUBMITTER: Haji-Valizadeh H
PROVIDER: S-EPMC4300948 | biostudies-literature | 2014 May
REPOSITORIES: biostudies-literature
ACCESS DATA