Unknown

Dataset Information

0

Insulin-like growth factor-I inhibition with pasireotide decreases cell proliferation and increases apoptosis in pre-malignant lesions of the breast: a phase 1 proof of principle trial.


ABSTRACT: Estrogen inhibition is effective in preventing breast cancer in only up to 50% of women with precancerous lesions and many experience side effects that are poorly tolerated. As insulin-like growth factor I (IGF-I) underlies both estrogen and progesterone actions and has other direct effects on mammary development and carcinogenesis, we hypothesized that IGF-I inhibition might provide a novel approach for breast cancer chemoprevention.In total, 13 women with core breast biopsies diagnostic of atypical hyperplasia (AH) were treated for 10 days with pasireotide, a somatostatin analog which uniquely inhibits IGF-I action in the mammary gland. They then had excision biopsies. 12 patients also had proliferative lesions and one a ductal carcinoma in situ (DCIS). Primary outcomes were changes in cell proliferation and apoptosis after treatment. Expression of estrogen receptor (ER), progesterone receptor (PR), and phosphorylated Insulin-like growth factor I receptor (IGF-1R), protein kinase B (AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2) were also assessed. Core and excision biopsies from 14 untreated patients served as non-blinded controls. Hyperglycemia and other side effects were carefully monitored.Pasireotide decreased proliferation and increased apoptosis in all AH (from 3.6?±?2.6% to 1.3?±?1.2% and from 0.3?±?0.2% to 1.5?±?1.6%, respectively) and proliferative lesions (from 3.8?±?2.5% to 1.8?±?1.8% and from 0.3?±?0.2% to 1.3?±?0.6%, respectively). The DCIS responded similarly. ER and PR were not affected by pasireotide, while IGF-1R, ERK1/2 and AKT phosphorylation decreased significantly. In contrast, tissue from untreated controls showed no change in cell proliferation or phosphorylation of IGF-1R, AKT or ERK 1/2. Mild to moderate hyperglycemia associated with reduced insulin levels was found. Glucose fell into the normal range after discontinuing treatment. Pasireotide was well tolerated and did not cause symptoms of estrogen deprivation.IGF-I inhibition by pasireotide, acting through the IGF-1R, was associated with decreased proliferation and increased apoptosis in pre-malignant breast lesions and one DCIS. Assuming hyperglycemia can be controlled, these data suggest that inhibiting the IGF-I pathway may prove an effective alternative for breast cancer chemoprevention.NCT01372644 Trial date: July 1, 2007.

SUBMITTER: Singh B 

PROVIDER: S-EPMC4303192 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Insulin-like growth factor-I inhibition with pasireotide decreases cell proliferation and increases apoptosis in pre-malignant lesions of the breast: a phase 1 proof of principle trial.

Singh Baljit B   Smith Julia A JA   Axelrod Deborah M DM   Ameri Pietro P   Levitt Heather H   Danoff Ann A   Lesser Martin M   de Angelis Cristina C   Illa-Bochaca Irineu I   Lubitz Sara S   Huberman Daniel D   Darvishian Farbod F   Kleinberg David L DL  

Breast cancer research : BCR 20141111 6


<h4>Introduction</h4>Estrogen inhibition is effective in preventing breast cancer in only up to 50% of women with precancerous lesions and many experience side effects that are poorly tolerated. As insulin-like growth factor I (IGF-I) underlies both estrogen and progesterone actions and has other direct effects on mammary development and carcinogenesis, we hypothesized that IGF-I inhibition might provide a novel approach for breast cancer chemoprevention.<h4>Methods</h4>In total, 13 women with c  ...[more]

Similar Datasets

| S-EPMC8363925 | biostudies-literature
2024-06-26 | GSE263250 | GEO
2006-10-23 | GSE5721 | GEO
| S-EPMC7155918 | biostudies-literature
| S-EPMC6797776 | biostudies-literature
2010-05-26 | E-GEOD-10761 | biostudies-arrayexpress
2010-04-09 | GSE20873 | GEO
| S-EPMC4364455 | biostudies-literature
| S-EPMC7672910 | biostudies-literature
2008-03-08 | GSE10761 | GEO