Unknown

Dataset Information

0

Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.


ABSTRACT: Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.

SUBMITTER: Mahajan A 

PROVIDER: S-EPMC4307976 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

Mahajan Anubha A   Sim Xueling X   Ng Hui Jin HJ   Manning Alisa A   Rivas Manuel A MA   Highland Heather M HM   Locke Adam E AE   Grarup Niels N   Im Hae Kyung HK   Cingolani Pablo P   Flannick Jason J   Fontanillas Pierre P   Fuchsberger Christian C   Gaulton Kyle J KJ   Teslovich Tanya M TM   Rayner N William NW   Robertson Neil R NR   Beer Nicola L NL   Rundle Jana K JK   Bork-Jensen Jette J   Ladenvall Claes C   Blancher Christine C   Buck David D   Buck Gemma G   Burtt Noël P NP   Gabriel Stacey S   Gjesing Anette P AP   Groves Christopher J CJ   Hollensted Mette M   Huyghe Jeroen R JR   Jackson Anne U AU   Jun Goo G   Justesen Johanne Marie JM   Mangino Massimo M   Murphy Jacquelyn J   Neville Matt M   Onofrio Robert R   Small Kerrin S KS   Stringham Heather M HM   Syvänen Ann-Christine AC   Trakalo Joseph J   Abecasis Goncalo G   Bell Graeme I GI   Blangero John J   Cox Nancy J NJ   Duggirala Ravindranath R   Hanis Craig L CL   Seielstad Mark M   Wilson James G JG   Christensen Cramer C   Brandslund Ivan I   Rauramaa Rainer R   Surdulescu Gabriela L GL   Doney Alex S F AS   Lannfelt Lars L   Linneberg Allan A   Isomaa Bo B   Tuomi Tiinamaija T   Jørgensen Marit E ME   Jørgensen Torben T   Kuusisto Johanna J   Uusitupa Matti M   Salomaa Veikko V   Spector Timothy D TD   Morris Andrew D AD   Palmer Colin N A CN   Collins Francis S FS   Mohlke Karen L KL   Bergman Richard N RN   Ingelsson Erik E   Lind Lars L   Tuomilehto Jaakko J   Hansen Torben T   Watanabe Richard M RM   Prokopenko Inga I   Dupuis Josee J   Karpe Fredrik F   Groop Leif L   Laakso Markku M   Pedersen Oluf O   Florez Jose C JC   Morris Andrew P AP   Altshuler David D   Meigs James B JB   Boehnke Michael M   McCarthy Mark I MI   Lindgren Cecilia M CM   Gloyn Anna L AL  

PLoS genetics 20150127 1


Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted  ...[more]

Similar Datasets

| S-EPMC7367044 | biostudies-literature
| S-EPMC2398737 | biostudies-literature
| S-EPMC3749326 | biostudies-literature
2020-04-01 | GSE142385 | GEO
| S-EPMC3433394 | biostudies-literature
| S-EPMC3613127 | biostudies-literature
| S-EPMC5501849 | biostudies-literature
| S-EPMC11351548 | biostudies-literature
| S-EPMC7719789 | biostudies-literature
| S-EPMC8914280 | biostudies-literature