Plasma free fatty acid levels influence Zn(2+) -dependent histidine-rich glycoprotein-heparin interactions via an allosteric switch on serum albumin.
Ontology highlight
ABSTRACT: Histidine-rich glycoprotein (HRG) regulates coagulation through its ability to bind and neutralize heparins. HRG associates with Zn(2+) to stimulate HRG-heparin complex formation. Under normal conditions, the majority of plasma Zn(2+) associates with human serum albumin (HSA). However, free fatty acids (FFAs) allosterically disrupt Zn(2+) binding to HSA. Thus, high levels of circulating FFAs, as are associated with diabetes, obesity, and cancer, may increase the proportion of plasma Zn(2+) associated with HRG, contributing to an increased risk of thrombotic disease.To characterize Zn(2+) binding by HRG, examine the influence that FFAs have on Zn(2+) binding by HSA, and establish whether FFA-mediated displacement of Zn(2+) from HSA may influence HRG-heparin complex formation.Zn(2+) binding to HRG and to HSA in the presence of different FFA (myristate) concentrations were examined by isothermal titration calorimetry (ITC) and the formation of HRG-heparin complexes in the presence of different Zn(2+) concentrations by both ITC and ELISA.We found that HRG possesses 10 Zn(2+) sites (K' = 1.63 × 10(5) ) and that cumulative binding of FFA to HSA perturbed its ability to bind Zn(2+) . Also Zn(2+) binding was shown to increase the affinity with which HRG interacts with unfractionated heparins, but had no effect on its interaction with low molecular weight heparin (~ 6850 Da). [Correction added on 1 December 2014, after first online publication: In the preceding sentence, "6850 kDa" was corrected to "6850 Da".] Speciation modeling of plasma Zn(2+) based on the data obtained suggests that FFA-mediated displacement of Zn(2+) from serum albumin would be likely to contribute to the development of thrombotic complications in individuals with high plasma FFA levels.
SUBMITTER: Kassaar O
PROVIDER: S-EPMC4309485 | biostudies-literature | 2015 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA