Unknown

Dataset Information

0

A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators.


ABSTRACT:

Background

Conventional wisdom holds that, owing to the dominance of features such as chromatin level control, the expression of a gene cannot be readily predicted from knowledge of promoter architecture. This is reflected, for example, in a weak or absent correlation between promoter divergence and expression divergence between paralogs. However, an inability to predict may reflect an inability to accurately measure or employment of the wrong parameters. Here we address this issue through integration of two exceptional resources: ENCODE data on transcription factor binding and the FANTOM5 high-resolution expression atlas.

Results

Consistent with the notion that in eukaryotes most transcription factors are activating, the number of transcription factors binding a promoter is a strong predictor of expression breadth. In addition, evolutionarily young duplicates have fewer transcription factor binders and narrower expression. Nonetheless, we find several binders and cooperative sets that are disproportionately associated with broad expression, indicating that models more complex than simple correlations should hold more predictive power. Indeed, a machine learning approach improves fit to the data compared with a simple correlation. Machine learning could at best moderately predict tissue of expression of tissue specific genes.

Conclusions

We find robust evidence that some expression parameters and paralog expression divergence are strongly predictable with knowledge of transcription factor binding repertoire. While some cooperative complexes can be identified, consistent with the notion that most eukaryotic transcription factors are activating, a simple predictor, the number of binding transcription factors found on a promoter, is a robust predictor of expression breadth.

SUBMITTER: Hurst LD 

PROVIDER: S-EPMC4310617 | biostudies-literature | 2014 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators.

Hurst Laurence D LD   Sachenkova Oxana O   Daub Carsten C   Forrest Alistair R R AR   Huminiecki Lukasz L  

Genome biology 20140731 7


<h4>Background</h4>Conventional wisdom holds that, owing to the dominance of features such as chromatin level control, the expression of a gene cannot be readily predicted from knowledge of promoter architecture. This is reflected, for example, in a weak or absent correlation between promoter divergence and expression divergence between paralogs. However, an inability to predict may reflect an inability to accurately measure or employment of the wrong parameters. Here we address this issue throu  ...[more]

Similar Datasets

| S-EPMC9283973 | biostudies-literature
| S-EPMC8283185 | biostudies-literature
| S-EPMC5632622 | biostudies-literature
| S-EPMC7065751 | biostudies-literature
| S-EPMC2905795 | biostudies-literature
| S-EPMC9259796 | biostudies-literature
| S-EPMC6050171 | biostudies-literature
| S-EPMC9496944 | biostudies-literature
| S-EPMC4915038 | biostudies-literature
2022-10-12 | GSE214998 | GEO