Project description:The stimulation of trimethylation of histone H3 Lys4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied, with multiple mechanisms having been proposed for this form of histone cross-talk. Cps35/Swd2 within COMPASS (complex of proteins associated with Set1) is considered to bridge these different processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation (H3K4me3) without interacting with Cps35/Swd2, and such cross-talk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we used biochemical, structural, in vivo, and chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the cross-talk. Furthermore, the apparent wild-type levels of H3K4me3 in the 762-Set1 strain are due to the rogue methylase activity of this mutant, resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to the gene bodies and intergenic regions. We also performed detailed screens and identified yeast strains lacking H2Bub but containing intact H2Bub enzymes that have normal levels of H3K4me3, suggesting that monoubiquitination may not directly stimulate COMPASS but rather works in the context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the monoubiquitination machinery and Cps35/Swd2 function to focus COMPASS's H3K4me3 activity at promoter-proximal regions in a context-dependent manner.
Project description:The multiprotein complex Set1/COMPASS is the founding member of the histone H3 lysine 4 (H3K4) methyltransferases, whose human homologs include the MLL and hSet1 complexes. COMPASS can mono-, di-, and trimethylate H3K4, but transitioning to di- and trimethylation requires prior H2B monoubiquitination followed by recruitment of the Cps35 (Swd2) subunit of COMPASS. Another subunit, Cps40 (Spp1), interacts directly with Set1 and is only required for transitioning to trimethylation. To investigate how the Set1 and COMPASS subunits establish the methylation states of H3K4, we generated a homology model of the catalytic domain of Saccharomyces cerevisiae yeast Set1 and identified several key residues within the Set1 catalytic pocket that are capable of regulating COMPASS's activity. We show that Tyr1052, a putative Phe/Tyr switch of Set1, plays an essential role in the regulation of H3K4 trimethylation by COMPASS and that the mutation to phenylalanine (Y1052F) suppresses the loss of Cps40 in H3K4 trimethylation levels, suggesting that Tyr1052 functions together with Cps40. However, the loss of H2B monoubiquitination is not suppressed by this mutation, while Cps40 is stably assembled in COMPASS on chromatin, demonstrating that Tyr1052- and Cps40-mediated H3K4 trimethylation takes place following and independently of H2B monoubiquitination. Our studies provide a molecular basis for the way in which H3K4 trimethylation is regulated by Tyr1052 and the Cps40 subunit of COMPASS.
Project description:TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.
Project description:In Saccharomyces cerevisiae, the Nrd1-Nab3-Sen1 pathway mediates the termination of snoRNAs and cryptic unstable transcripts (CUTs). Both Nrd1 and the Set1 histone H3K4 methyltransferase complex interact with RNA polymerase II (Pol II) during early elongation, leading us to test whether these two processes are functionally linked. The deletion of SET1 exacerbates the growth rate and termination defects of nrd1 mutants. Set1 is important for the appropriate recruitment of Nrd1. Additionally, Set1 modulates histone acetylation levels in the promoter-proximal region via the Rpd3L deacetylase and NuA3 acetyltransferase complexes, both of which contain PHD finger proteins that bind methylated H3K4. Increased levels of histone acetylation reduce the efficiency of Nrd1-dependent termination. We speculate that Set1 promotes proper early termination by the Nrd1-Nab3-Sen1 complex by affecting the kinetics of Pol II transcription in early elongation.
Project description:Epigenetic mechanisms, including histone modifications, have emerged as important factors influencing cell fate determination. The functional role of H3K4 methylation, however, remains largely unclear in the maintenance and differentiation of hematopoietic stem cells (HSCs)/hematopoietic progenitor cells (HPCs). Here we show that DPY30, a shared core subunit of the SET1/MLL family methyltransferase complexes and a facilitator of their H3K4 methylation activity, is important for ex vivo proliferation and differentiation of human CD34(+) HPCs. DPY30 promotes HPC proliferation by directly regulating the expression of genes critical for cell proliferation. Interestingly, while DPY30 knockdown in HPCs impaired their differentiation into the myelomonocytic lineage, it potently promoted hemoglobin production and affected the kinetics of their differentiation into the erythroid lineage. In an in vivo model, we show that morpholino-mediated dpy30 knockdown resulted in severe defects in the development of the zebrafish hematopoietic system, which could be partially rescued by coinjection of dpy30 messenger RNA. Taken together, our results establish a critical role of DPY30 in the proliferation and appropriate differentiation of hematopoietic progenitor cells and in animal hematopoiesis. Finally, we also demonstrate a crucial role of DPY30 in the growth of several MLL1-fusion-mediated leukemia cell lines.
Project description:Recent cryo-EM structures show the highly dynamic nature of the MLL1-NCP (nucleosome core particle) interaction. Functional implication and regulation of such dynamics remain unclear. Here we show that DPY30 and the intrinsically disordered regions (IDRs) of ASH2L work together in restricting the rotational dynamics of the MLL1 complex on the NCP. We show that DPY30 binding to ASH2L leads to stabilization and integration of ASH2L IDRs into the MLL1 complex and establishes new ASH2L-NCP contacts. The significance of ASH2L-DPY30 interactions is demonstrated by requirement of both ASH2L IDRs and DPY30 for dramatic increase of processivity and activity of the MLL1 complex. This DPY30 and ASH2L-IDR dependent regulation is NCP-specific and applies to all members of the MLL/SET1 family of enzymes. We further show that DPY30 is causal for de novo establishment of H3K4me3 in ESCs. Our study provides a paradigm of how H3K4me3 is regulated on chromatin and how H3K4me3 heterogeneity can be modulated by ASH2L IDR interacting proteins.
Project description:Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.
Project description:Histone modifiers are critical regulators of chromatin-based processes in eukaryotes. The histone methyltransferase Set1, a component of the Set1C/COMPASS complex, catalyzes the methylation at lysine 4 of histone H3 (H3K4me), a hallmark of euchromatin. Here, we show that the fission yeast Schizosaccharomyces pombe Set1 utilizes distinct domain modules to regulate disparate classes of repetitive elements associated with euchromatin and heterochromatin via H3K4me-dependent and -independent pathways. Set1 employs its RNA-binding RRM2 and catalytic SET domains to repress Tf2 retrotransposons and pericentromeric repeats while relying on its H3K4me function to maintain transcriptional repression at the silent mating type (mat) locus and subtelomeric regions. These repressive functions of Set1 correlate with the requirement of Set1C components to maintain repression at the mat locus and subtelomeres while dispensing Set1C in repressing Tf2s and pericentromeric repeats. We show that the contributions of several Set1C subunits to the states of H3K4me diverge considerably from those of Saccharomyces cerevisiae orthologs. Moreover, unlike S. cerevisiae, the regulation of Set1 protein level is not coupled to the status of H3K4me or histone H2B ubiquitination by the HULC complex. Intriguingly, we uncover a genome organization role for Set1C and H3K4me in mediating the clustering of Tf2s into Tf bodies by antagonizing the acetyltransferase Mst1-mediated H3K4 acetylation. Our study provides unexpected insights into the regulatory intricacies of a highly conserved chromatin-modifying complex with diverse roles in genome control.
Project description:The stimulation of trimethylation of histone H3 lysine 4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied with multiple mechanisms proposed for this form of histone crosstalk. Cps35/Swd2 within COMPASS is considered to bridge these processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation without interacting with Cps35/Swd2, and such crosstalk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we use biochemical, structural, in vivo, and ChIP-seq approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the crosstalk. Furthermore, the apparent wild-type levels of H3K4 trimethylation (H3K4me3) in the 762-Set1 strain is due to rogue methylase activity of this mutant resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to gene bodies and intergenic regions. We have also performed detailed screens and identified yeast strains lacking H2Bub, but containing intact H2Bub enzymes, that have normal levels of H3K4me3, suggesting that ubiquitination may not directly stimulate COMPASS, but rather works in a context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the ubiquitination machinery and Cps35/Swd2 function to focus COMPASS’ H3K4me3 activity at promoter-proximal regions in a context dependent manner. ChIP-Seq for H3K4ME3 in S. cerevisie wild-type strains and strains expressing a truncated form of Set1: aa762-1080 Set1. H3K4ME3 ChIP-Seq was also compared for wild-type, leo1 knockout, and chd1 knockout strains
Project description:The COMPASS (complex of proteins associated with Set1) complex represents the prototype of the SET1/MLL family of methyltransferases that controls gene transcription by H3K4 methylation (H3K4me). Although H2B monoubiquitination (H2Bub) is well known as a prerequisite histone mark for COMPASS activity, how H2Bub activates COMPASS remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of an extended COMPASS catalytic module (CM) bound to the H2Bub and free nucleosome. The COMPASS CM clamps onto the nucleosome disk-face via an extensive interface to capture the flexible H3 N-terminal tail. The interface also sandwiches a critical Set1 arginine-rich motif (ARM) that autoinhibits COMPASS. Unexpectedly, without enhancing COMPASS-nucleosome interaction, H2Bub activates the enzymatic assembly by packing against Swd1 and alleviating the inhibitory effect of the Set1 ARM upon fastening it to the acidic patch. By delineating the spatial configuration of the COMPASS-H2Bub-nucleosome assembly, our studies establish the structural framework for understanding the long-studied H2Bub-H3K4me histone modification crosstalk.