Unknown

Dataset Information

0

Inhibition of transforming growth factor ? signaling promotes epiblast formation in mouse embryos.


ABSTRACT: Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)? pathway. Inhibition of the TGF? pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGF? signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGF? pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways--TGF?, GSK3?, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)--significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGF? pathway alone or by combined inhibition of the GSK3? and FGF/Erk pathways only.

SUBMITTER: Ghimire S 

PROVIDER: S-EPMC4313423 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos.

Ghimire Sabitri S   Heindryckx Björn B   Van der Jeught Margot M   Neupane Jitesh J   O'Leary Thomas T   Lierman Sylvie S   De Vos Winnok H WH   Chuva de Sousa Lopes Susana S   Deroo Tom T   De Sutter Petra P  

Stem cells and development 20141029 4


Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is  ...[more]

Similar Datasets

| S-EPMC5819616 | biostudies-literature
| S-EPMC7657512 | biostudies-literature
| S-EPMC3237853 | biostudies-literature
| S-EPMC3880024 | biostudies-literature
| S-EPMC6923358 | biostudies-literature
| S-EPMC8303216 | biostudies-literature
| S-EPMC2690707 | biostudies-literature
| S-EPMC5173031 | biostudies-literature
| S-EPMC3073125 | biostudies-literature
| S-EPMC10782472 | biostudies-literature