Unknown

Dataset Information

0

Near-instant surface-selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins.


ABSTRACT: Agonist-promoted G-protein coupled receptor (GPCR) endocytosis and recycling plays an important role in many signaling events in the cell. However, the approaches that allow fast and quantitative analysis of such processes still remain limited. Here we report an improved labeling approach based on the genetic fusion of a fluorogen activating protein (FAP) to a GPCR and binding of a sulfonated analog of the malachite green (MG) fluorogen to rapidly and selectively label cell surface receptors. Fluorescence microscopy and flow cytometry demonstrate that this dye does not cross the plasma membrane, binds with high affinity to a dL5** FAP-GPCR fusion construct, activating tagged surface receptors within seconds of addition. The ability to rapidly and selectively label cell surface receptors with a fluorogenic genetically encoded tag allows quantitative imaging and analysis of highly dynamic processes like receptor endocytosis and recycling.

SUBMITTER: Yan Q 

PROVIDER: S-EPMC4318720 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Near-instant surface-selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins.

Yan Qi Q   Schmidt Brigitte F BF   Perkins Lydia A LA   Naganbabu Matharishwan M   Saurabh Saumya S   Andreko Susan K SK   Bruchez Marcel P MP  

Organic & biomolecular chemistry 20150201 7


Agonist-promoted G-protein coupled receptor (GPCR) endocytosis and recycling plays an important role in many signaling events in the cell. However, the approaches that allow fast and quantitative analysis of such processes still remain limited. Here we report an improved labeling approach based on the genetic fusion of a fluorogen activating protein (FAP) to a GPCR and binding of a sulfonated analog of the malachite green (MG) fluorogen to rapidly and selectively label cell surface receptors. Fl  ...[more]

Similar Datasets

| S-EPMC6347535 | biostudies-literature
| S-EPMC3820157 | biostudies-literature
| S-EPMC3967550 | biostudies-literature
| S-EPMC9079909 | biostudies-literature
| S-EPMC3680115 | biostudies-literature
| S-EPMC10465228 | biostudies-literature
| S-EPMC4867890 | biostudies-literature
| S-EPMC3010281 | biostudies-literature
| S-EPMC4334571 | biostudies-literature
| S-EPMC2957894 | biostudies-literature