Preclinical studies of the potent and selective nicotinic ?4?2 receptor ligand VMY-2-95.
Ontology highlight
ABSTRACT: The discovery and development of small molecules that antagonize neuronal nicotinic acetylcholine receptors may provide new ligands for evaluation in models of depression or addiction. We discovered a small molecule, VMY-2-95, a nAChR ligand with picomolar affinity and high selectivity for ?4?2 receptors. In this study, we investigated its preclinical profile in regards to solubility, lipophilicity, metabolic stability, intestinal permeability, bioavailability, and drug delivery to the rat brain. Metabolic stability of VMY-2-95·2HCl was monitored on human liver microsomes, and specific activity of VMY-2-95·2HCl on substrate metabolism by CYP1A2, 2C9, 2C19, 2D6, and 3A4 was tested in a high-throughput manner. The intestinal transport of VMY-2-95·2HCl was studied through Caco-2 cell monolayer permeability. VMY-2-95·2HCl was soluble in water and chemically stable, and the apparent partition coefficient was 0.682. VMY-2-95·2HCl showed significant inhibition of CYP2C9 and 2C19, but weak or no effect on 1A2, 2D6, and 3A4. The Caco-2 cell model studies revealed that VMY-2-95·2HCl was highly permeable with efflux ratio of 1.11. VMY-2-95·2HCl achieved a maximum serum concentration of 0.56 mg/mL at 0.9 h and was orally available with a half-life of ?9 h. Furthermore, VMY-2-95·2HCl was detected in the rat brain after 3 mg/kg oral administration and achieved a maximal brain tissue concentration of 2.3 ?g/g within 60 min. Overall, the results demonstrate that VMY-2-95·2HCl has good drug like properties and can penetrate the blood-brain barrier with oral administration.
SUBMITTER: Kong H
PROVIDER: S-EPMC4319692 | biostudies-literature | 2015 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA