Unknown

Dataset Information

0

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.


ABSTRACT: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (?50 years in males and ?60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.

SUBMITTER: Do R 

PROVIDER: S-EPMC4319990 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.

Do Ron R   Stitziel Nathan O NO   Won Hong-Hee HH   Jørgensen Anders Berg AB   Duga Stefano S   Angelica Merlini Pier P   Kiezun Adam A   Farrall Martin M   Goel Anuj A   Zuk Or O   Guella Illaria I   Asselta Rosanna R   Lange Leslie A LA   Peloso Gina M GM   Auer Paul L PL   Girelli Domenico D   Martinelli Nicola N   Farlow Deborah N DN   DePristo Mark A MA   Roberts Robert R   Stewart Alexander F R AF   Saleheen Danish D   Danesh John J   Epstein Stephen E SE   Sivapalaratnam Suthesh S   Hovingh G Kees GK   Kastelein John J JJ   Samani Nilesh J NJ   Schunkert Heribert H   Erdmann Jeanette J   Shah Svati H SH   Kraus William E WE   Davies Robert R   Nikpay Majid M   Johansen Christopher T CT   Wang Jian J   Hegele Robert A RA   Hechter Eliana E   Marz Winfried W   Kleber Marcus E ME   Huang Jie J   Johnson Andrew D AD   Li Mingyao M   Burke Greg L GL   Gross Myron M   Liu Yongmei Y   Assimes Themistocles L TL   Heiss Gerardo G   Lange Ethan M EM   Folsom Aaron R AR   Taylor Herman A HA   Olivieri Oliviero O   Hamsten Anders A   Clarke Robert R   Reilly Dermot F DF   Yin Wu W   Rivas Manuel A MA   Donnelly Peter P   Rossouw Jacques E JE   Psaty Bruce M BM   Herrington David M DM   Wilson James G JG   Rich Stephen S SS   Bamshad Michael J MJ   Tracy Russell P RP   Cupples L Adrienne LA   Rader Daniel J DJ   Reilly Muredach P MP   Spertus John A JA   Cresci Sharon S   Hartiala Jaana J   Tang W H Wilson WH   Hazen Stanley L SL   Allayee Hooman H   Reiner Alex P AP   Carlson Christopher S CS   Kooperberg Charles C   Jackson Rebecca D RD   Boerwinkle Eric E   Lander Eric S ES   Schwartz Stephen M SM   Siscovick David S DS   McPherson Ruth R   Tybjaerg-Hansen Anne A   Abecasis Goncalo R GR   Watkins Hugh H   Nickerson Deborah A DA   Ardissino Diego D   Sunyaev Shamil R SR   O'Donnell Christopher J CJ   Altshuler David D   Gabriel Stacey S   Kathiresan Sekar S  

Nature 20141210 7537


Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the  ...[more]

Similar Datasets

| S-EPMC4409815 | biostudies-literature
| S-EPMC3459953 | biostudies-literature
| S-EPMC8831607 | biostudies-literature
| S-EPMC5988035 | biostudies-literature
| S-EPMC9247822 | biostudies-literature
| S-EPMC4321025 | biostudies-literature
| S-EPMC7390936 | biostudies-literature
| S-EPMC7393257 | biostudies-literature
| S-EPMC4159152 | biostudies-literature
| S-EPMC3686259 | biostudies-other