Unknown

Dataset Information

0

Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis.


ABSTRACT: In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, β3-octopamine receptor (Octβ3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octβ3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.

SUBMITTER: Ohhara Y 

PROVIDER: S-EPMC4321272 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3240600 | biostudies-literature
| S-EPMC3991436 | biostudies-literature
| S-EPMC2254334 | biostudies-literature
| S-EPMC4063667 | biostudies-literature
2022-08-11 | GSE181948 | GEO
2019-04-20 | GSE130103 | GEO
| S-EPMC3562185 | biostudies-literature
2013-10-25 | GSE49326 | GEO
2005-10-04 | GSE3069 | GEO
2023-10-16 | GSE229077 | GEO