Unknown

Dataset Information

0

Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation.


ABSTRACT: Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under high N:P conditions. Experiments were carried out in chemostats with a media input N:P of 441 and we estimated the half saturation concentration for growth under P limiting conditions (K s,p ) and cellular C:N:P ratios. The K s,p values were the lowest measured for any phytoplankton and on par with ambient P concentrations in oligotrophic regions. We also observed that both strains were able draw down P below 3 nM. Both K s,p and drawdown concentration were lower for the open ocean vs. coastal Synechococcus strain, which may be linked to differences in P acquisition genes in these strains. Cellular C:P and N:P ratios were significantly higher in relation to the Redfield ratio for both Synechococcus strains but we saw no difference in these ratios among growth rates or strains. These results demonstrate that Synechococcus can proliferate under very low P conditions and also that genetically different strains have unique physiological responses to P limitation.

SUBMITTER: Kretz CB 

PROVIDER: S-EPMC4324148 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation.

Kretz Cécilia B CB   Bell Doug W DW   Lomas Debra A DA   Lomas Michael W MW   Martiny Adam C AC  

Frontiers in microbiology 20150211


Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under high N:P conditions. Experiments were carried out in chemostats with a media input N:P of 441 and we e  ...[more]

Similar Datasets

| S-EPMC6988372 | biostudies-literature
| S-EPMC5742850 | biostudies-literature
2010-04-08 | GSE18511 | GEO
2021-06-14 | MSV000087621 | MassIVE
| S-EPMC8276816 | biostudies-literature
| S-EPMC6027262 | biostudies-literature
2010-04-08 | E-GEOD-18511 | biostudies-arrayexpress
| S-EPMC8854398 | biostudies-literature
| S-EPMC4642353 | biostudies-literature
2016-05-17 | PXD003976 | Pride