Project description:Cerebral amyloid angiopathy (CAA), defined as the accumulation of amyloid-beta (Aβ) on the vascular wall, is a major pathology of Alzheimer's disease (AD) and has been thought to be caused by the failure of Aβ clearance. Although two types of perivascular clearance mechanisms, intramural periarterial drainage (IPAD) and the perivascular cerebrospinal fluid (CSF) influx, have been identified, the exact contribution of CAA on perivascular clearance is still not well understood. In this study, we investigated the effect of CAA on the structure and function of perivascular clearance systems in the APP/PS1 transgenic mouse model. To investigate the pathological changes accompanied by CAA progression, the key elements of perivascular clearance such as the perivascular basement membrane, vascular smooth muscle cells (vSMCs), and vascular pulsation were evaluated in middle-aged (7-9 months) and old-aged (19-21 months) mice using in vivo imaging and immunofluorescence staining. Changes in IPAD and perivascular CSF influx were identified by ex vivo fluorescence imaging after dextran injection into the parenchyma or cisterna magna. Amyloid deposition on the vascular wall disrupted the integrity and morphology of the arterial basement membrane. With CAA progression, vascular pulsation was augmented, and conversely, vSMC coverage was decreased. These pathological changes were more pronounced in the surface arteries with earlier amyloid accumulation than in penetrating arteries. IPAD and perivascular CSF influx were impaired in the middle-aged APP/PS1 mice and further aggravated in old age, showing severely impaired tracer influx and efflux patterns. Reduced clearance was also observed in old wild-type mice without changing the tracer distribution pattern in the influx and efflux pathway. These findings suggest that CAA is not merely a consequence of perivascular clearance impairment, but rather a contributor to this process, causing changes in arterial function and structure and increasing AD severity.
Project description:Iatrogenic cerebral amyloid angiopathy, a disease caused by contact with neurosurgical material or human growth hormone contaminated by beta-amyloid peptide (Aβ), has a prion-like transmission mechanism. We present a series of three patients under 55 years of age who underwent cranial surgery. All of them developed multiple cerebral hemorrhages, transient focal neurological deficits, and/or cognitive impairment after 3-4 decades. MRI was compatible with CAA, and Aβ deposition was confirmed. The third patient, who had a ventriculoperitoneal valve, also showed Aβ deposition in the peritoneum and diagnostic biomarkers of Alzheimer's disease. Co-pathology with Alzheimer disease and its iatrogenic transmission should be considered.
Project description:BackgroundVascular pathology is a common feature in patients with advanced Alzheimer's disease, with cerebral amyloid angiopathy (CAA) and microvascular changes commonly observed at autopsies and in genetic mouse models. However, despite a plethora of studies addressing the possible impact of CAA on brain vasculature, results have remained contradictory, showing reduced, unchanged, or even increased capillary densities in human and rodent brains overexpressing amyloid-β in Alzheimer's disease and Down's syndrome.ObjectiveWe asked if CAA is associated with changes in angiogenetic factors or receptors and if so, whether this would translate into morphological alterations in pericyte coverage and vessel density.MethodsWe utilized the transgenic mice carrying the Arctic (E693G) and Swedish (KM670/6701NL) amyloid precursor protein which develop severe CAA in addition to parenchymal plaques.ResultsThe main finding of the present study was that CAA in Tg-ArcSwe mice is associated with upregulated angiopoietin and downregulated hypoxia-inducible factor. In the same mice, we combined immunohistochemistry and electron microscopy to quantify the extent of CAA and investigate to which degree vessels associated with amyloid plaques were pathologically affected. We found that despite a severe amount of CAA and alterations in several angiogenetic factors in Tg-ArcSwe mice, this was not translated into significant morphological alterations like changes in pericyte coverage or vessel density.ConclusionOur data suggest that CAA does not impact vascular density but might affect capillary turnover by causing changes in the expression levels of angiogenetic factors.
Project description:Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer's disease (AD) pathogenesis through amyloid-? (A?) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting A?, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including A? drainage pathways, A? aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Project description:Accumulating evidence has shown a strong relationship between Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), and cerebrovascular disease. Cognitive impairment in AD patients can result from cortical microinfarcts associated with CAA, as well as the synaptic and neuronal disturbances caused by cerebral accumulations of ?-amyloid (A?) and tau proteins. The pathophysiology of AD may lead to a toxic chain of events consisting of A? overproduction, impaired A? clearance, and brain ischemia. Insufficient removal of A? leads to development of CAA and plays a crucial role in sporadic AD cases, implicating promotion of A? clearance as an important therapeutic strategy. A? is mainly eliminated by three mechanisms: (1) enzymatic/glial degradation, (2) transcytotic delivery, and (3) perivascular drainage (3-"d" mechanisms). Enzymatic degradation may be facilitated by activation of A?-degrading enzymes such as neprilysin, angiotensin-converting enzyme, and insulin-degrading enzyme. Transcytotic delivery can be promoted by inhibition of the receptor for advanced glycation end products (RAGE), which mediates transcytotic influx of circulating A? into brain. Successful use of the RAGE inhibitor TTP488 in Phase II testing has led to a Phase III clinical trial for AD patients. The perivascular drainage system seems to be driven by motive force generated by cerebral arterial pulsations, suggesting that vasoactive drugs can facilitate A? clearance. One of the drugs promoting this system is cilostazol, a selective inhibitor of type 3 phosphodiesterase. The clearance of fluorescent soluble A? tracers was significantly enhanced in cilostazol-treated CAA model mice. Given that the balance between A? synthesis and clearance determines brain A? accumulation, and that A? is cleared by several pathways stated above, multi-drugs combination therapy could provide a mainstream cure for sporadic AD.
Project description:BackgroundDecreased cerebrospinal fluid (CSF) amyloid-β 1-40 (Aβ40) and amyloid-β 1-42 (Aβ42) and increased total and phosphorylated tau (t-tau, p-tau) concentrations have been described in cerebral amyloid angiopathy (CAA).ObjectiveOur aim was to analyze these biomarkers in patients with CAA-related inflammation (CAA-I).MethodsWe prospectively recruited nine patients with acute phase CAA-I fulfilling Chung criteria. CSF was analyzed for t-tau, p-tau, Aβ42, and Aβ40. Data were compared to controls (n = 14), patients with Alzheimer's disease (AD, n = 42), CAA (n = 10), and primary angiitis of the central nervous system (PACNS, n = 3).ResultsFor the CAA-I group, statistically significant differences were: lower Aβ42 (p = 0.00053) compared to the control group; lower t-tau (p = 0.018), p-tau (p < 0.001), and Aβ40 (p < 0.001) compared to AD; lower Aβ42 (p = 0.027) compared to CAA; lower Aβ42 (p = 0.012) compared to PACNS. Nearly significantly lower Aβ40 (p = 0.051) and higher t-tau (p = 0.051) were seen in CAA-I compared to controls.ConclusionCSF biomarkers profile similar to that of CAA was observed in CAA-I (with even lower levels of Aβ42 compared to CAA). Based on our findings, high p-tau seems more specific for AD, whereas low Aβ42 differentiates CAA-I from CAA, PACNS, and controls, and low Aβ40 differentiates CAA-I from AD.
Project description:Transgenic rat models of Alzheimer's disease were used to examine differences in memory and brain histology. Double transgenic female rats (APP+PS1) over-expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) and single transgenic rats (APP21) over-expressing human APP were compared with wild type Fischer rats (WT). The Barnes maze assessed learning and memory and showed that both APP21 and APP+PS1 rats made significantly more errors than the WT rats during the acquisition phase, signifying slower learning. Additionally, the APP+PS1 rats made significantly more errors following a retention interval, indicating impaired memory compared to both the APP21 and WT rats. Immunohistochemistry using an antibody against amyloid-β (Aβ) showed extensive and mostly diffuse Aβ plaques in the hippocampus and dense plaques that contained tau in the cortex of the brains of the APP+PS1 rats. Furthermore, the APP+PS1 rats also showed vascular changes, including cerebral amyloid angiopathy with extensive Aβ deposits in cortical and leptomeningeal blood vessel walls and venous collagenosis. In addition to the Aβ accumulation observed in arterial, venous, and capillary walls, APP+PS1 rats also displayed enlarged blood vessels and perivascular space. Overall, the brain histopathology and behavioral assessment showed that the APP+PS1 rats demonstrated behavioral characteristics and vascular changes similar to those commonly observed in patients with Alzheimer's disease.
Project description:BackgroundPrevious reports have suggested that patients with cerebral amyloid angiopathy (CAA) may harbor smaller white matter, basal ganglia, and cerebellar volumes compared to age-matched healthy controls (HC) or patients with Alzheimer's disease (AD). We investigated whether CAA is associated with subcortical atrophy.MethodsThe study was based on the multi-site Functional Assessment of Vascular Reactivity cohort and included 78 probable CAA (diagnosed according to the Boston criteria v2.0), 33 AD, and 70 HC. Cerebral and cerebellar volumes were extracted from brain 3D T1-weighted MRI using FreeSurfer (v6.0). Subcortical volumes, including total white matter, thalamus, basal ganglia, and cerebellum were reported as proportion (%) of estimated total intracranial volume. White matter integrity was quantified by the peak width of skeletonized mean diffusivity.ResultsParticipants in the CAA group were older (74.0 ± 7.0, female 44%) than the AD (69.7 ± 7.5, female 42%) and HC (68.8 ± 7.8, female 69%) groups. CAA participants had the highest white matter hyperintensity volume and worse white matter integrity of the three groups. After adjusting for age, sex, and study site, CAA participants had smaller putamen volumes (mean differences, -0.024% of intracranial volume; 95% confidence intervals, -0.041% to -0.006%; p = 0.005) than the HCs but not AD participants (-0.003%; -0.024 to 0.018%; p = 0.94). Other subcortical volumes including subcortical white matter, thalamus, caudate, globus pallidus, cerebellar cortex or cerebellar white matter were comparable between all three groups.ConclusionIn contrast to prior studies, we did not find substantial atrophy of subcortical volumes in CAA compared to AD or HCs, except for the putamen. Differences between studies may reflect heterogeneity in CAA presenting syndromes or severity.
Project description:Cerebral amyloid angiopathy (CAA) often coexists with Alzheimer's disease (AD). APOE4 is a strong genetic risk factor for both AD and CAA. Sex-dependent differences have been shown in AD as well as in cerebrovascular diseases. Therefore, we examined the effects of APOE4, sex, and pathological components on CAA in AD subjects. A total of 428 autopsied brain samples from pathologically confirmed AD cases were analyzed. CAA severity was histologically scored in inferior parietal, middle frontal, motor, superior temporal and visual cortexes. In addition, subgroups with severe CAA (n = 60) or without CAA (n = 39) were subjected to biochemical analysis of amyloid-β (Aβ) and apolipoprotein E (apoE) by ELISA in the temporal cortex. After adjusting for age, Braak neurofibrillary tangle stage and Thal amyloid phase, we found that overall CAA scores were higher in males than females. Furthermore, carrying one or more APOE4 alleles was associated with higher overall CAA scores. Biochemical analysis revealed that the levels of detergent-soluble and detergent-insoluble Aβ40, and insoluble apoE were significantly elevated in individuals with severe CAA or APOE4. The ratio of Aβ40/Aβ42 in insoluble fractions was also increased in the presence of CAA or APOE4, although it was negatively associated with male sex. Levels of insoluble Aβ40 were positively associated with those of insoluble apoE, which were strongly influenced by CAA status. Pertaining to insoluble Aβ42, the levels of apoE correlated regardless of CAA status. Our results indicate that sex and APOE genotypes differentially influence the presence and severity of CAA in AD, likely by affecting interaction and aggregation of Aβ40 and apoE.
Project description:Background and purposeAlthough amyloid positron emission tomography (PET) might provide a molecular diagnosis for cerebral amyloid angiopathy (CAA), it does not have sufficient specificity for this condition relative to incipient Alzheimer's disease (AD). To identify a regional amyloid uptake pattern specific to CAA, we attempted to reduce this overlap by selecting "pure CAA" (i.e., fulfilling the criteria for probable CAA but without tau PET AD signature) and "pure AD" (i.e., positive amyloid PET and presence of tau PET AD signature, but without lobar hemorrhagic lesions). We hypothesized that occipital tracer uptake relative to the whole cortex (WC) would be higher in patients with pure CAA and may serve as a specific diagnostic marker.MethodsPatients who fulfilled these criteria were identified. In addition to the occipital region of interest (ROI), we assessed the frontal and posterior cingulate cortex (PCC) ROIs that are sensitive to AD. Amyloid PET uptake was expressed as the absolute standardized uptake value ratio (SUVR) and ROI/WC ratio. The diagnostic utility of amyloid PET was assessed using the Youden index cutoff.ResultsEighteen patients with AD and 42 patients with CAAs of comparable age were eligible. The occipital/WC was significantly higher in CAA than AD (1.02 [0.97-1.06] vs. 0.95 [0.87-1.01], P=0.001), with an area under curve of 0.762 (95% confidence interval [CI] 0.635-0.889) and a specificity of 72.2% (95% CI 46.5-90.3) at Youden cutoff (0.98). The occipital lobe, frontal lobe, PCC and WC SUVRs were significantly lower in CAA than in AD. The frontal/WC and PCC/WC ratios did not differ significantly between the groups.ConclusionUsing stringent patient selection to minimize between-condition overlap, this study demonstrated the specificity of higher relative occipital amyloid uptake in CAA than in AD.