The neural basis of deception in strategic interactions.
Ontology highlight
ABSTRACT: Communication based on informational asymmetries abounds in politics, business, and almost any other form of social interaction. Informational asymmetries may create incentives for the better-informed party to exploit her advantage by misrepresenting information. Using a game-theoretic setting, we investigate the neural basis of deception in human interaction. Unlike in most previous fMRI research on deception, the participants decide themselves whether to lie or not. We find activation within the right temporo-parietal junction (rTPJ), the dorsal anterior cingulate cortex (ACC), the (pre)cuneus (CUN), and the anterior frontal gyrus (aFG) when contrasting lying with truth telling. Notably, our design also allows for an investigation of the neural foundations of sophisticated deception through telling the truth-when the sender does not expect the receiver to believe her (true) message. Sophisticated deception triggers activation within the same network as plain lies, i.e., we find activity within the rTPJ, the CUN, and aFG. We take this result to show that brain activation can reveal the sender's veridical intention to deceive others, irrespective of whether in fact the sender utters the factual truth or not.
Project description:Previous deception research on repeated interviews found that liars are not less consistent than truth tellers, presumably because liars use a "repeat strategy" to be consistent across interviews. The goal of this study was to design an interview procedure to overcome this strategy. Innocent participants (truth tellers) and guilty participants (liars) had to convince an interviewer that they had performed several innocent activities rather than committing a mock crime. The interview focused on the innocent activities (alibi), contained specific central and peripheral questions, and was repeated after 1 week without forewarning. Cognitive load was increased by asking participants to reply quickly. The liars' answers in replying to both central and peripheral questions were significantly less accurate, less consistent, and more evasive than the truth tellers' answers. Logistic regression analyses yielded classification rates ranging from around 70% (with consistency as the predictor variable), 85% (with evasive answers as the predictor variable), to over 90% (with an improved measure of consistency that incorporated evasive answers as the predictor variable, as well as with response accuracy as the predictor variable). These classification rates were higher than the interviewers' accuracy rate (54%).
Project description:To navigate the complex social world, individuals need to represent others' mental states to think strategically and predict their next move. Strategic mentalizing can be classified into different levels of theory of mind according to its order of mental state attribution of other people's beliefs, desires, intentions, and so forth. For example, reasoning people's beliefs about simple world facts is the first-order attribution while going further to reason people's beliefs about the minds of others is the second-order attribution. The neural substrates that support such high-order recursive reasoning in strategic interpersonal interactions are still unclear. Here, using a sequential-move interactional game together with functional magnetic resonance imaging (fMRI), we showed that recursive reasoning engaged the frontal-subcortical regions. At the stimulus stage, the ventral striatum was more activated in high-order reasoning as compared with low-order reasoning. At the decision stage, high-order reasoning activated the medial prefrontal cortex (mPFC) and other mentalizing regions. Moreover, functional connectivity between the dorsomedial prefrontal cortex (dmPFC) and the insula/hippocampus was positively correlated with individual differences in high-order social reasoning. This work delineates the neural correlates of high-order recursive thinking in strategic games and highlights the key role of the interplay between mPFC and subcortical regions in advanced social decision-making.
Project description:Competing successfully against an intelligent adversary requires the ability to mentalize an opponent's state of mind to anticipate his/her future behavior. Although much is known about what brain regions are activated during mentalizing, the question of how this function is implemented has received little attention to date. Here we formulated a computational model describing the capacity to mentalize in games. We scanned human subjects with functional MRI while they participated in a simple two-player strategy game and correlated our model against the functional MRI data. Different model components captured activity in distinct parts of the mentalizing network. While medial prefrontal cortex tracked an individual's expectations given the degree of model-predicted influence, posterior superior temporal sulcus was found to correspond to an influence update signal, capturing the difference between expected and actual influence exerted. These results suggest dissociable contributions of different parts of the mentalizing network to the computations underlying higher-order strategizing in humans.
Project description:Stigmergy is a generic coordination mechanism widely used by animal societies, in which traces left by individuals in a medium guide and stimulate their subsequent actions. In humans, new forms of stigmergic processes have emerged through the development of online services that extensively use the digital traces left by their users. Here, we combine interactive experiments with faithful data-based modeling to investigate how groups of individuals exploit a simple rating system and the resulting traces in an information search task in competitive or noncompetitive conditions. We find that stigmergic interactions can help groups to collectively find the cells with the highest values in a table of hidden numbers. We show that individuals can be classified into three behavioral profiles that differ in their degree of cooperation. Moreover, the competitive situation prompts individuals to give deceptive ratings and reinforces the weight of private information versus social information in their decisions.
Project description:In social interactions, strategic uncertainty arises when the outcome of one's choice depends on the choices of others. An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the counterparts' behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual) situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of coordination games requiring different degrees of strategic thinking of the kind 'I think that you think that I think etc.' We found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating risk and higher order beliefs (i.e. beliefs about others' beliefs).
Project description:Although a growing body of literature suggests that cognitive control processes are involved in deception, much about the neural correlates of lying remains unknown. In this study, we tested whether brain activation associated with deception, as measured by functional magnetic resonance imaging (fMRI), can be detected either in preparation for or during the execution of a lie, and whether they depend on the content of the lie. We scanned participants while they lied or told the truth about either their personal experiences (episodic memories) or personal beliefs. Regions in the frontal and parietal cortex showed higher activation when participants lied compared with when they were telling the truth, regardless of whether they were asked about their past experiences or opinions. In contrast, lie-related activation in the right temporal pole, precuneus and the right amygdala differed by the content of the lie. Preparing to lie activated parietal and frontal brain regions that were distinct from those activated while participants executed lies. Our findings concur with previous reports on the involvement of frontal and parietal regions in deception, but specify brain regions involved in the preparation vs execution of deception, and those involved in deceiving about experiences vs opinions.
Project description:Although human and animal behaviors are largely shaped by reinforcement and punishment, choices in social settings are also influenced by information about the knowledge and experience of other decision-makers. During competitive games, monkeys increased their payoffs by systematically deviating from a simple heuristic learning algorithm and thereby countering the predictable exploitation by their computer opponent. Neurons in the dorsomedial prefrontal cortex (dmPFC) signaled the animal's recent choice and reward history that reflected the computer's exploitative strategy. The strength of switching signals in the dmPFC also correlated with the animal's tendency to deviate from the heuristic learning algorithm. Therefore, the dmPFC might provide control signals for overriding simple heuristic learning algorithms based on the inferred strategies of the opponent.
Project description:Deception is a form of manipulation aimed at misleading another person by conveying false or truthful messages. Manipulative truthful statements could be considered as sophisticated deception and elicit an increased cognitive load. However, only one fMRI study reported its neural correlates. To provide independent evidence for sophisticated deception, we carried out an fMRI study replicating the experimental paradigm and Bayesian statistical approach utilized in that study. During the experiment, participants played a game against an opponent by sending deliberate deceptive or honest messages. Compared to truth-telling, deceptive intentions, regardless of how they were fulfilled, were associated with increased BOLD signals in the bilateral temporoparietal junction (TPJ), left precuneus, and right superior temporal sulcus (STS). The right TPJ participates in the attribution of mental states, acting in a social context, and moral behaviour. Moreover, the other revealed brain areas have been considered nodes in the theory of mind brain neural system. Therefore, the obtained results reflect an increased demand for socio‑cognitive processes associated with deceptive intentions. We replicated the original study showing the involvement of the right TPJ and expanded upon it by revealing the involvement of the left TPJ, left precuneus and right STS in actions with deceptive intentions.
Project description:Several recent studies suggest that placebos administered without deception (i.e., non-deceptive placebos) can help people manage a variety of highly distressing clinical disorders and nonclinical impairments. However, whether non-deceptive placebos represent genuine psychobiological effects is unknown. Here we address this issue by demonstrating across two experiments that during a highly arousing negative picture viewing task, non-deceptive placebos reduce both a self-report and neural measure of emotional distress, the late positive potential. These results show that non-deceptive placebo effects are not merely a product of response bias. Additionally, they provide insight into the neural time course of non-deceptive placebo effects on emotional distress and the psychological mechanisms that explain how they function.
Project description:People tell lies not only for their own self-interests but sometimes also to help others. Little is known about the ways in which different types of goals modulate behaviors and neural responses in deception. The present study investigated the neural processes associated with spontaneous deception that occurs with altruistic reasons (i.e. the money would be donated to charity), self-serving reasons (i.e. the participant receives all of the money) and mixed goals (i.e. the money would be equally split between the participant and the charity). Altruistic motivation for deception reduced the intensity of moral conflict and the subsequent mental cost of resolving this conflict, reflected by a smaller N2-P3 effect in the purely altruistic condition. When making decisions about whether to lie, self-interest was a stronger motivator than others' interests, and the participants tended to lie more for themselves than for others. When the lie could be mutually beneficial for both of the self and others, the participants tended to lie even when they knew that they could be easily caught, but they actually lied for their own self-interest rather than for altruistic reasons. These findings shed light on the neural basis of 'good lies' and decision-making in mutually beneficial situations.