Unknown

Dataset Information

0

Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model: implications for tissue engineering.


ABSTRACT: Preclinical large animal models are essential for evaluating new tissue engineering (TE) technologies and refining surgical approaches for cartilage repair. Some preclinical animal studies, including the commonly used minipig model, have noted marked remodeling of the subchondral bone. However, the mechanisms underlying this response have not been well characterized. Thus, our objective was to compare in-vivo outcomes of chondral defects with varied injury depths and treatments.Trochlear chondral defects were created in 11 Yucatan minipigs (6 months old). Groups included an untreated partial-thickness defect (PTD), an untreated full-thickness defect (FTD), and FTDs treated with microfracture, autologous cartilage transfer (FTD-ACT), or an acellular hyaluronic acid hydrogel. Six weeks after surgery, micro-computed tomography (?CT) was used to quantitatively assess defect fill and subchondral bone remodeling. The quality of cartilage repair was assessed using the ICRS-II histological scoring system and immunohistochemistry for type II collagen. A finite element model (FEM) was developed to assess load transmission.Using ?CT, substantial bone remodeling was observed for all FTDs, but not for the PTD group. The best overall histological scores and greatest type II collagen staining was found for the FTD-ACT and PTD groups. The FEM confirmed that only the FTD-ACT group could initially restore appropriate transfer of compressive loads to the underlying bone.The bony remodeling observed in this model system appears to be a biological phenomena and not a result of altered mechanical loading, with the depth of the focal chondral defect (partial vs. full thickness) dictating the bony remodeling response. The type of cartilage injury should be carefully controlled in studies utilizing this model to evaluate TE approaches for cartilage repair.

SUBMITTER: Fisher MB 

PROVIDER: S-EPMC4333259 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cartilage repair and subchondral bone remodeling in response to focal lesions in a mini-pig model: implications for tissue engineering.

Fisher Matthew B MB   Belkin Nicole S NS   Milby Andrew H AH   Henning Elizabeth A EA   Bostrom Marc M   Kim Minwook M   Pfeifer Christian C   Meloni Gregory G   Dodge George R GR   Burdick Jason A JA   Schaer Thomas P TP   Steinberg David R DR   Mauck Robert L RL  

Tissue engineering. Part A 20141211 3-4


<h4>Objective</h4>Preclinical large animal models are essential for evaluating new tissue engineering (TE) technologies and refining surgical approaches for cartilage repair. Some preclinical animal studies, including the commonly used minipig model, have noted marked remodeling of the subchondral bone. However, the mechanisms underlying this response have not been well characterized. Thus, our objective was to compare in-vivo outcomes of chondral defects with varied injury depths and treatments  ...[more]

Similar Datasets

| S-EPMC5689111 | biostudies-literature
| S-EPMC6391143 | biostudies-literature
| S-EPMC9731868 | biostudies-literature
| S-EPMC8631927 | biostudies-literature
| S-EPMC4002491 | biostudies-other
| S-EPMC10458387 | biostudies-literature
| S-EPMC8794706 | biostudies-literature
| S-EPMC4459965 | biostudies-literature
| S-EPMC7911822 | biostudies-literature
| S-EPMC5674679 | biostudies-literature