Unknown

Dataset Information

0

Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation.


ABSTRACT: BACKGROUND:Cellular differentiation is a critical process during development of multicellular animals that must be tightly controlled in order to avoid precocious differentiation or failed generation of differentiated cell types. Research in flies, vertebrates, and nematodes has led to the identification of a conserved role for Notch signaling as a mechanism to regulate cellular differentiation regardless of tissue/cell type. Notch signaling can occur through a canonical pathway that results in the activation of hes gene expression by a complex consisting of the Notch intracellular domain, SuH, and the Mastermind co-activator. Alternatively, Notch signaling can occur via a non-canonical mechanism that does not require SuH or activation of hes gene expression. Regardless of which mechanism is being used, high Notch activity generally inhibits further differentiation, while low Notch activity promotes differentiation. Flies, vertebrates, and nematodes are all bilaterians, and it is therefore unclear if Notch regulation of differentiation is a bilaterian innovation, or if it represents a more ancient mechanism in animals. RESULTS:To reconstruct the ancestral function of Notch signaling we investigate Notch function in a non-bilaterian animal, the sea anemone Nematostella vectensis (Cnidaria). Morpholino or pharmacological knockdown of Nvnotch causes increased expression of the neural differentiation gene NvashA. Conversely, overactivation of Notch activity resulting from overexpression of the Nvnotch intracellular domain or by overexpression of the Notch ligand Nvdelta suppresses NvashA. We also knocked down or overactivated components of the canonical Notch signaling pathway. We disrupted NvsuH with morpholino or by overexpressing a dominant negative NvsuH construct. We saw no change in expression levels for Nvhes genes or NvashA. Overexpression of Nvhes genes did not alter NvashA expression levels. Lastly, we tested additional markers associated with neuronal differentiation and observed that non-canonical Notch signaling broadly suppresses neural differentiation in Nematostella. CONCLUSIONS:We conclude that one ancestral role for Notch in metazoans was to regulate neural differentiation. Remarkably, we found no evidence for a functional canonical Notch pathway during Nematostella embryogenesis, suggesting that the non-canonical hes-independent Notch signaling mechanism may represent an ancestral Notch signaling pathway.

SUBMITTER: Layden MJ 

PROVIDER: S-EPMC4335385 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation.

Layden Michael J MJ   Martindale Mark Q MQ  

EvoDevo 20140919


<h4>Background</h4>Cellular differentiation is a critical process during development of multicellular animals that must be tightly controlled in order to avoid precocious differentiation or failed generation of differentiated cell types. Research in flies, vertebrates, and nematodes has led to the identification of a conserved role for Notch signaling as a mechanism to regulate cellular differentiation regardless of tissue/cell type. Notch signaling can occur through a canonical pathway that res  ...[more]

Similar Datasets

| S-EPMC3921607 | biostudies-literature
| S-EPMC2827930 | biostudies-literature
| S-EPMC6030499 | biostudies-literature
| S-EPMC5617834 | biostudies-literature
| S-EPMC7244951 | biostudies-literature
| S-EPMC1979095 | biostudies-literature
| S-EPMC3683383 | biostudies-literature
| S-EPMC2000393 | biostudies-literature
| S-EPMC4582185 | biostudies-literature
| S-EPMC3317964 | biostudies-literature