Unknown

Dataset Information

0

Evolution of oligomeric state through allosteric pathways that mimic ligand binding.


ABSTRACT: Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.

SUBMITTER: Perica T 

PROVIDER: S-EPMC4337988 | biostudies-literature | 2014 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evolution of oligomeric state through allosteric pathways that mimic ligand binding.

Perica Tina T   Kondo Yasushi Y   Tiwari Sandhya P SP   McLaughlin Stephen H SH   Kemplen Katherine R KR   Zhang Xiuwei X   Steward Annette A   Reuter Nathalie N   Clarke Jane J   Teichmann Sarah A SA  

Science (New York, N.Y.) 20141201 6216


Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly s  ...[more]

Similar Datasets

| S-EPMC3361393 | biostudies-literature
| S-EPMC6783271 | biostudies-literature
| S-EPMC7160140 | biostudies-literature
| S-EPMC6657754 | biostudies-literature
| S-EPMC2831127 | biostudies-literature
| S-EPMC3756528 | biostudies-literature
| S-EPMC3696331 | biostudies-literature
| S-EPMC6876687 | biostudies-literature
| S-EPMC6467052 | biostudies-literature
| S-EPMC3098941 | biostudies-literature