Unknown

Dataset Information

0

Optimizing the sequence of anti-EGFR-targeted therapy in EGFR-mutant lung cancer.


ABSTRACT: Metastatic EGFR-mutant lung cancers are sensitive to the first- and second-generation EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib, and afatinib, but resistance develops. Acquired resistance to gefitinib or erlotinib occurs most commonly (>50%) via the emergence of a second-site EGFR mutation, T790M. Two strategies to overcome T790M-mediated resistance are dual inhibition of EGFR with afatinib plus the anti-EGFR antibody cetuximab (A+C), or mutant-specific EGFR inhibition with AZD9291. A+C and AZD9291 are now also being tested as first-line therapies, but whether these therapies will extend progression-free survival or induce more aggressive forms of resistance in this setting remains unknown. We modeled resistance to multiple generations of anti-EGFR therapies preclinically to understand the effects of sequential treatment with anti-EGFR agents on drug resistance and determine the optimal order of treatment. Using a panel of erlotinib/afatinib-resistant cells, including a novel patient-derived cell line (VP-2), we found that AZD9291 was more potent than A+C at inhibiting cell growth and EGFR signaling in this setting. Four of four xenograft-derived A+C-resistant cell lines displayed in vitro and in vivo sensitivity to AZD9291, but four of four AZD9291-resistant cell lines demonstrated cross-resistance to A+C. Addition of cetuximab to AZD9291 did not confer additive benefit in any preclinical disease setting. This work, emphasizing a mechanistic understanding of the effects of therapies on tumor evolution, provides a framework for future clinical trials testing different treatment sequences. This paradigm is applicable to other tumor types in which multiple generations of inhibitors are now available.

SUBMITTER: Meador CB 

PROVIDER: S-EPMC4338015 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications


Metastatic EGFR-mutant lung cancers are sensitive to the first- and second-generation EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib, and afatinib, but resistance develops. Acquired resistance to gefitinib or erlotinib occurs most commonly (>50%) via the emergence of a second-site EGFR mutation, T790M. Two strategies to overcome T790M-mediated resistance are dual inhibition of EGFR with afatinib plus the anti-EGFR antibody cetuximab (A+C), or mutant-specific EGFR inhibition with AZD  ...[more]

Similar Datasets

| S-EPMC7407807 | biostudies-literature
2022-06-04 | GSE199240 | GEO
| S-EPMC5260616 | biostudies-literature
| S-EPMC9712740 | biostudies-literature
| S-EPMC7914351 | biostudies-literature
| S-EPMC3575628 | biostudies-literature
| S-EPMC4147888 | biostudies-other
| S-EPMC6588884 | biostudies-literature
| S-EPMC5311035 | biostudies-literature
| S-EPMC7121227 | biostudies-literature