Unknown

Dataset Information

0

Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates.


ABSTRACT: Although live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston-Zagreb (EZ), allowing recovery of recombinant (r)MV(EZ). Three recombinant viruses were generated that contained the open reading frame encoding enhanced green fluorescent protein (EGFP) within an additional transcriptional unit (ATU) at various positions within the genome. rMV(EZ)EGFP(1), rMV(EZ)EGFP(3), and rMV(EZ)EGFP(6) contained the ATU upstream of the N gene, following the P gene, and following the H gene, respectively. The viruses were compared in vitro by growth curves, which indicated that rMV(EZ)EGFP(1) was overattenuated. Intratracheal infection of cynomolgus macaques with these recombinant viruses revealed differences in immunogenicity. rMV(EZ)EGFP(1) and rMV(EZ)EGFP(6) did not induce satisfactory serum antibody responses, whereas both in vitro and in vivo rMV(EZ)EGFP(3) was functionally equivalent to the commercial MV(EZ)-containing vaccine. Intramuscular vaccination of macaques with rMV(EZ)EGFP(3) resulted in the identification of EGFP(+) cells in the muscle at days 3, 5, and 7 postvaccination. Phenotypic characterization of these cells demonstrated that muscle cells were not infected and that dendritic cells and macrophages were the predominant target cells of live-attenuated MV.Even though MV strain Edmonston-Zagreb has long been used as a live-attenuated vaccine (LAV) to protect against measles, nothing is known about the primary cells in which the virus replicates in vivo. This is vital information given the push to move toward needle-free routes of vaccination, since vaccine virus replication is essential for vaccination efficacy. We have generated a number of recombinant MV strains expressing enhanced green fluorescent protein. The virus that best mimicked the nonrecombinant vaccine virus was formulated according to protocols for production of commercial vaccine virus batches, and was subsequently used to assess viral tropism in nonhuman primates. The virus primarily replicated in professional antigen-presenting cells, which may explain why this LAV is so immunogenic and efficacious.

SUBMITTER: Rennick LJ 

PROVIDER: S-EPMC4338879 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates.

Rennick Linda J LJ   de Vries Rory D RD   Carsillo Thomas J TJ   Lemon Ken K   van Amerongen Geert G   Ludlow Martin M   Nguyen D Tien DT   Yüksel Selma S   Verburgh R Joyce RJ   Haddock Paula P   McQuaid Stephen S   Duprex W Paul WP   de Swart Rik L RL  

Journal of virology 20141203 4


<h4>Unlabelled</h4>Although live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston-Zagreb (EZ), allowing recovery of recombinant (r)MV(EZ). Three recombinant viruses were generated that contained the open reading frame encoding enhanced green fluorescent protein (EGFP) within an additional transcr  ...[more]

Similar Datasets

| S-EPMC3201208 | biostudies-literature
| S-EPMC2669169 | biostudies-other
| S-EPMC9334537 | biostudies-literature
| S-EPMC6667792 | biostudies-literature
| S-EPMC3041112 | biostudies-other
| S-EPMC7585873 | biostudies-literature
| S-EPMC2395187 | biostudies-literature
2016-05-10 | GSE72430 | GEO
| S-EPMC5962102 | biostudies-literature
| S-EPMC11009496 | biostudies-literature