Unknown

Dataset Information

0

Macroscopic rotation of photon polarization induced by a single spin.


ABSTRACT: Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network.

SUBMITTER: Arnold C 

PROVIDER: S-EPMC4339913 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5717106 | biostudies-literature
| S-EPMC4526854 | biostudies-other
| S-EPMC4397915 | biostudies-other
| S-EPMC5458076 | biostudies-literature
| S-EPMC5756664 | biostudies-literature
| S-EPMC4288213 | biostudies-other
| S-EPMC9052755 | biostudies-literature
| S-EPMC6635371 | biostudies-literature
| S-EPMC7076727 | biostudies-literature
| S-EPMC5715149 | biostudies-literature