Unknown

Dataset Information

0

Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion.


ABSTRACT: The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion.

SUBMITTER: Poussard S 

PROVIDER: S-EPMC4340375 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion.

Poussard Sylvie S   Decossas Marion M   Le Bihan Olivier O   Mornet Stéphane S   Naudin Grégoire G   Lambert Olivier O  

International journal of nanomedicine 20150219


The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking ove  ...[more]

Similar Datasets

| S-EPMC4310741 | biostudies-literature
| S-EPMC6885834 | biostudies-literature
| S-EPMC3834319 | biostudies-literature
| S-SCDT-10_1038-S44319-024-00197-4 | biostudies-other
| S-EPMC3422988 | biostudies-literature
| S-EPMC4589950 | biostudies-literature
| S-EPMC7593845 | biostudies-literature
| S-EPMC6149487 | biostudies-literature
| S-EPMC8351116 | biostudies-literature
| S-EPMC6912290 | biostudies-literature