Ontology highlight
ABSTRACT:
SUBMITTER: Eckdahl TT
PROVIDER: S-EPMC4340930 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
Eckdahl Todd T TT Campbell A Malcolm AM Heyer Laurie J LJ Poet Jeffrey L JL Blauch David N DN Snyder Nicole L NL Atchley Dustin T DT Baker Erich J EJ Brown Micah M Brunner Elizabeth C EC Callen Sean A SA Campbell Jesse S JS Carr Caleb J CJ Carr David R DR Chadinha Spencer A SA Chester Grace I GI Chester Josh J Clarkson Ben R BR Cochran Kelly E KE Doherty Shannon E SE Doyle Catherine C Dwyer Sarah S Edlin Linnea M LM Evans Rebecca A RA Fluharty Taylor T Frederick Janna J Galeota-Sprung Jonah J Gammon Betsy L BL Grieshaber Brandon B Gronniger Jessica J Gutteridge Katelyn K Henningsen Joel J Isom Bradley B Itell Hannah L HL Keffeler Erica C EC Lantz Andrew J AJ Lim Jonathan N JN McGuire Erin P EP Moore Alexander K AK Morton Jerrad J Nakano Meredith M Pearson Sara A SA Perkins Virginia V Parrish Phoebe P Pierson Claire E CE Polpityaarachchige Sachith S Quaney Michael J MJ Slattery Abagael A Smith Kathryn E KE Spell Jackson J Spencer Morgan M Taye Telavive T Trueblood Kamay K Vrana Caroline J CJ Whitesides E Tucker ET
PloS one 20150225 2
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed wit ...[more]