Unknown

Dataset Information

0

Pharmacometabolomics of l-carnitine treatment response phenotypes in patients with septic shock.


ABSTRACT: Sepsis therapeutics have a poor history of success in clinical trials, due in part to the heterogeneity of enrolled patients. Pharmacometabolomics could differentiate drug response phenotypes and permit a precision medicine approach to sepsis.To use existing serum samples from the phase 1 clinical trial of l-carnitine treatment for severe sepsis to metabolically phenotype l-carnitine responders and nonresponders.Serum samples collected before (T0) and after completion of the infusion (T24, T48) from patients randomized to either l-carnitine (12 g) or placebo for the treatment of vasopressor-dependent septic shock were assayed by untargeted (1)H-nuclear magnetic resonance metabolomics. The normalized, quantified metabolite data sets of l-carnitine- and placebo-treated patients at each time point were compared by analysis of variance with post-hoc testing for multiple comparisons. Pathway analysis was performed to statistically rank metabolic networks.Thirty-eight metabolites were identified in all samples. Concentrations of 3-hydroxybutyrate, acetoacetate, and 3-hydroxyisovalerate were different at T0 and over time in l-carnitine-treated survivors versus nonsurvivors. Pathway analysis of pretreatment metabolites revealed that synthesis and degradation of ketone bodies had the greatest impact in differentiating l-carnitine treatment response. Analysis of all patients based on pretreatment 3-hydroxybutyrate concentration yielded distinct phenotypes. Using the T0 median 3-hydroxybutyrate level (153 ?M), patients were categorized as either high or low ketone. l-Carnitine-treated low-ketone patients had greater use of carnitine as evidenced by lower post-treatment l-carnitine levels. The l-carnitine responders also had faster resolution of vasopressor requirement and a trend toward a greater improvement in mortality at 1 year (P = 0.038) compared with patients with higher 3-hydroxybutyrate.The results of this preliminary study, which were not readily apparent from the parent clinical trial, show a unique metabolite profile of l-carnitine responders and introduce pharmacometabolomics as a viable strategy for informing l-carnitine responsiveness. The approach taken in this study represents a concrete example for the application of precision medicine to sepsis therapeutics that warrants further study.

SUBMITTER: Puskarich MA 

PROVIDER: S-EPMC4342803 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pharmacometabolomics of l-carnitine treatment response phenotypes in patients with septic shock.

Puskarich Michael A MA   Finkel Michael A MA   Karnovsky Alla A   Jones Alan E AE   Trexel Julie J   Harris Brooke N BN   Stringer Kathleen A KA  

Annals of the American Thoracic Society 20150101 1


<h4>Rationale</h4>Sepsis therapeutics have a poor history of success in clinical trials, due in part to the heterogeneity of enrolled patients. Pharmacometabolomics could differentiate drug response phenotypes and permit a precision medicine approach to sepsis.<h4>Objectives</h4>To use existing serum samples from the phase 1 clinical trial of l-carnitine treatment for severe sepsis to metabolically phenotype l-carnitine responders and nonresponders.<h4>Methods</h4>Serum samples collected before  ...[more]

Similar Datasets

2016-12-08 | ST000785 | MetabolomicsWorkbench
| S-EPMC8604225 | biostudies-literature
| S-EPMC5847421 | biostudies-literature
| S-EPMC7790338 | biostudies-literature
| S-EPMC6501183 | biostudies-literature
| S-EPMC4069250 | biostudies-literature
| S-EPMC3594230 | biostudies-literature
2020-08-16 | GSE131761 | GEO
| S-EPMC4646706 | biostudies-literature
| S-EPMC11253460 | biostudies-literature