Unknown

Dataset Information

0

Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase.


ABSTRACT: Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O-O bond splitting transition of the catalytic cycle (A ? P(R)), it has been proposed that the electron transfer to the binuclear iron-copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane-solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state-dependent organization of water molecules within the protein structure that gates the proton transfer pathway.

SUBMITTER: Sharma V 

PROVIDER: S-EPMC4343153 | biostudies-literature | 2015 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase.

Sharma Vivek V   Enkavi Giray G   Vattulainen Ilpo I   Róg Tomasz T   Wikström Mårten M  

Proceedings of the National Academy of Sciences of the United States of America 20150202 7


Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O-O bond splitting transiti  ...[more]

Similar Datasets

| S-EPMC3246025 | biostudies-literature
| S-EPMC2254171 | biostudies-literature
| S-EPMC4220735 | biostudies-literature
| S-EPMC10155922 | biostudies-literature
| S-EPMC3449329 | biostudies-literature
| S-EPMC1820732 | biostudies-literature
| S-EPMC9197590 | biostudies-literature
| S-EPMC5873145 | biostudies-literature
| S-EPMC4995112 | biostudies-literature
| S-EPMC3005615 | biostudies-literature