Unknown

Dataset Information

0

Cholestenoic acids regulate motor neuron survival via liver X receptors.


ABSTRACT: Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3?,7?-dihydroxycholest-5-en-26-oic acid (3?,7?-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3?-hydroxy-7-oxocholest-5-en-26-oic acid (3?H,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3?,7?-diHCA and 3?H,7O-CA, 3?-hydroxycholest-5-en-26-oic acid (3?-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paresis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX), respectively. SPG5 is characterized by spastic paresis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPG5 revealed an excess of the toxic LXR ligand, 3?-HCA, while patients with CTX and SPG5 exhibited low levels of the survival-promoting LXR ligand 3?,7?-diHCA. Moreover, 3?,7?-diHCA prevented the loss of motor neurons induced by 3?-HCA in the developing mouse midbrain in vivo.Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death.

SUBMITTER: Theofilopoulos S 

PROVIDER: S-EPMC4347238 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cholestenoic acids regulate motor neuron survival via liver X receptors.

Theofilopoulos Spyridon S   Griffiths William J WJ   Crick Peter J PJ   Yang Shanzheng S   Meljon Anna A   Ogundare Michael M   Kitambi Satish Srinivas SS   Lockhart Andrew A   Tuschl Karin K   Clayton Peter T PT   Morris Andrew A AA   Martinez Adelaida A   Reddy M Ashwin MA   Martinuzzi Andrea A   Bassi Maria T MT   Honda Akira A   Mizuochi Tatsuki T   Kimura Akihiko A   Nittono Hiroshi H   De Michele Giuseppe G   Carbone Rosa R   Criscuolo Chiara C   Yau Joyce L JL   Seckl Jonathan R JR   Schüle Rebecca R   Schöls Ludger L   Sailer Andreas W AW   Kuhle Jens J   Fraidakis Matthew J MJ   Gustafsson Jan-Åke JÅ   Steffensen Knut R KR   Björkhem Ingemar I   Björkhem Ingemar I   Ernfors Patrik P   Sjövall Jan J   Arenas Ernest E   Wang Yuqin Y  

The Journal of clinical investigation 20141001 11


Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. Whi  ...[more]

Similar Datasets

| S-EPMC5048144 | biostudies-literature
| S-EPMC3919158 | biostudies-literature
| S-EPMC2431126 | biostudies-literature
| S-EPMC5325804 | biostudies-literature
| S-EPMC4615316 | biostudies-literature
| S-EPMC3121858 | biostudies-literature
| S-EPMC3779651 | biostudies-literature
| S-EPMC3269075 | biostudies-literature
2020-05-05 | GSE66197 | GEO
| S-EPMC6099188 | biostudies-other