Correction: Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions.
Correction: Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions.
Project description:Environmental salinity creates a key barrier to limit the distribution of most aquatic organisms. Adaptation to osmotic fluctuation is believed to be a factor facilitating species diversification. Adaptive evolution often involves beneficial mutations at more than one locus. Bivalves hold great interest, with numerous species living in waters, as osmoconformers, who maintain the osmotic pressure balance mostly by free amino acids. In this study, 107,076,589 reads from two groups of Crassostrea hongkongensis were produced and the assembled into 130,629 contigs. Transcripts putatively involved in stress-response, innate immunity and cell processes were identified according to Gene ontology and KEGG pathway analyses. Comparing with the transcriptome of C. gigas to characterize the diversity of transcripts between species with osmotic divergence, we identified 182,806 high-quality single nucleotide polymorphisms (SNPs) for C. hongkongensis, and 196,779 SNPs for C. gigas. Comparison of 11,602 pairs of putative orthologs allowed for identification of 14 protein-coding genes that experienced strong positive selection (Ka/Ks>1). In addition, 45 genes that may show signs of moderate positive selection (1 ≥ Ka/Ks>0.5) were also identified. Based on Ks ratios and divergence time between the two species published previously, we estimated a neutral transcriptome-wide substitution mutation rate of 1.39 × 10(-9) per site per year. Several genes were differentially expressed across the control and treated groups of each species. This is the first time to sequence the transcriptome of C. hongkongensis and provide the most comprehensive transcriptomic resource available for it. The increasing amount of transcriptome data on Crassostrea provides an excellent resource for phylogenetic analysis. A large number of SNPs identified in this work are expected to provide valuable resources for future marker and genotyping assay development. The analysis of natural selection provides an innovative view on the adaptation within species and sets the basis for future genetic and evolutionary studies.
Project description:Vibrio parahaemolyticus infection in humans is associated with raw oyster consumption. Evaluation of V. parahaemolyticus presence in oysters is of most interest because of the economic and public health issues that it represents. To explore V. parahaemolyticus accumulation and depuration in adult Crassostrea gigas, we developed a GFP-tagged V. parahaemolyticus strain (IFVp201-gfp+ ), as well as a rapid and efficient quantification method in C. gigas oysters haemolymph by flow cytometry. Impact of the life history of C. gigas on accumulation and depuration of V. parahaemolyticus IFVp201 was subsequently investigated. We found that naive oysters, i.e. grown in controlled facilities with UV treated seawater, accumulated significantly more IFVp201 than environmental oysters, i.e. grown in intertidal environment. We hypothesized that environmental oysters could have been immune primed, thus could limit V. parahaemolyticus accumulation. Meanwhile, both naive and environmental oysters had similar depuration rates.
Project description:Compared with understanding of biological shape and form, knowledge is sparse regarding what regulates growth and body size of a species. For example, the genetic and physiological causes of heterosis (hybrid vigor) have remained elusive for nearly a century. Here, we investigate gene-expression patterns underlying growth heterosis in the Pacific oyster (Crassostrea gigas) in two partially inbred (f = 0.375) and two hybrid larval populations produced by a reciprocal cross between the two inbred families. We cloned cDNA and generated 4.5 M sequence tags with massively parallel signature sequencing. The sequences contain 23,274 distinct signatures that are expressed at statistically nonzero levels and show a highly positively skewed distribution with median and modal counts of 9.25 million and 3 transcripts per million, respectively. For nearly half of these signatures, expression level depends on genotype and is predominantly nonadditive (hybrids deviate from the inbred average). Statistical contrasts suggest approximately 350 candidate genes for growth heterosis that exhibit concordant nonadditive expression in reciprocal hybrids; this represents only approximately 1.5% of the >20,000 transcripts. Patterns of gene expression, which include dominance for low expression and even underdominance of expression, are more complex than predicted from classical dominant or overdominant explanations of heterosis. Preliminary identification of ribosomal proteins among candidate genes supports the suggestion from previous studies that efficiency of protein metabolism plays a role in growth heterosis.
Project description:Pacific oysters (Crassostrea gigas) are a valuable aquaculture product that provides important ecosystem benefits. Among other threats, climate-driven changes in ocean temperature can impact oyster metabolism, survivorship, and immune function. We investigated how elevated temperature impacts larval oysters during settlement (19-33 days post-fertilization), using shotgun proteomics with data-independent acquisition to identify proteins present in the oysters after 2 weeks of exposure to 23 °C or 29 °C. Oysters maintained at elevated temperatures were larger and had a higher settlement rate, with 86% surviving to the end of the experiment; these oysters also had higher abundance trends of proteins related to metabolism and growth. Oysters held at 23 °C were smaller, had a decreased settlement rate, displayed 100% mortality, and had elevated abundance trends of proteins related to immune response. This novel use of proteomics was able to capture characteristic shifts in protein abundance that hint at important differences in the phenotypic response of Pacific oysters to temperature regimes. Additionally, this work has produced a robust proteomic product that will be the basis for future research on bivalve developmental processes.
Project description:Ostreid herpesvirus 1 (OsHV-1) is one of the most economically important pathogens of Pacific oysters. Understanding the pathogenesis of this virus is critical to developing tools to control outbreaks on shellfish farms. OsHV-1 is genetically related to vertebrate herpesviruses, which have a lytic and a latent stage, with the latent stage capable of being reactivated to the lytic stage. Here, OsHV-1 latency in Pacific oysters was investigated in experimentally and naturally infected oysters. Lytic infection in one-year-old oysters injected with the Tomales Bay strain of OsHV-1 was detectable between 1 and 4 days post-injection (dpi) but was not detectable after 5 dpi. The injected oysters shed 1 × 102 to 1 × 104 DNA copies/ml into the water during the 4-day acute phase. Lytic shedding was not detectable in two-year-old oysters injected similarly with the same strain of OsHV-1; however, the OsHV-1 genome was detectable by qPCR in the adductor muscle, gill, mantle, and hemocytes within the first 3 dpi, after which it became undetectable. No OsHV-1 was detectable in the adductor muscle, gill, or mantle from experimentally infected oysters on days 15 and 21 post-injection or from oysters sampled 9 months after surviving an OsHV-1 mortality event; however, OsHV-1 DNA could be detected in hemocytes of both experimentally infected oysters at 21 dpi and naturally infected oysters using nested PCR. In addition, lytic viral gene transcription was detectable in hemocytes of experimentally infected oysters between 1 and 21 dpi and in hemocytes of naturally infected oysters. Furthermore, OsHV-1 reactivation from latency was induced in experimentally infected oysters at 21 dpi and in naturally infected oysters 12 months after an OsHV-1 outbreak.
Project description:Raw oysters are considered a culinary delicacy but are frequently the culprit in food-borne norovirus (NoV) infections. As commercial depuration procedures are currently unable to efficiently eliminate NoV from oysters, an optimisation of the process should be considered. This study addresses the ability of elevated water temperatures to enhance the elimination of NoV and Tulane virus (TuV) from Pacific oysters (Crassostrea gigas). Both viruses were experimentally bioaccumulated in oysters, which were thereafter depurated at 12 °C and 17 °C for 4 weeks. Infectious TuV and viral RNA were monitored weekly for 28 days by TCID50 and (PMAxx-) RT-qPCR, respectively. TuV RNA was more persistent than NoV and decreased by < 0.5 log10 after 14 days, while NoV reductions were already > 1.0 log10 at this time. For RT-qPCR there was no detectable benefit of elevated water temperatures or PMAxx for either virus (p > 0.05). TuV TCID50 decreased steadily, and reductions were significantly different between the two temperatures (p < 0.001). This was most evident on days 14 and 21 when reductions at 17 °C were 1.3-1.7 log10 higher than at 12 °C. After 3 weeks, reductions > 3.0 log10 were observed at 17 °C, while at 12 °C reductions did not exceed 1.9 log10. The length of depuration also had an influence on virus numbers. TuV reductions increased from < 1.0 log10 after seven days to > 4.0 log10 after 4 weeks. This implies that an extension of the depuration period to more than seven days, possibly in combination with elevated water temperatures, may be beneficial for the inactivation and removal of viral pathogens.
Project description:Cd, Cr, Cu, Pb, and Zn concentrations were measured in oysters (C. gigas), plankton, and seawater during spring, summer, and autumn in Liaodong Bay (Bohai Sea, China) to elucidate the effects of season, region, and oyster size on metal bioaccumulation in oysters. Metal concentrations were quantified via atomic absorption spectrophotometry. Our study determined that metal concentrations in oysters, plankton, and seawater were the highest in summer, whereas the lowest levels occurred in autumn. Regarding oyster sizes, the highest Pb levels occurred in C3-sized oysters (> 5-cm length), whereas the highest Cd, Cr, Cu, and Zn levels occurred in C2 (3-5-cm length) oysters. In contrast, the lowest Cu and Pb levels occurred in C1 (< 3-cm length) oysters, whereas the lowest mean Cd, Cr, and Zn concentrations were observed in C3 oysters. Significant differences in trace metal concentrations in the three sample types were observed in all sampling sites.
Project description:Oysters are one of the main aquatic products sold in coastal areas worldwide and are popular among consumers because of their delicious taste and nutritional value. However, the microorganisms present in oysters may pose health risks to consumers. In this study, the microbial communities of Pacific oysters (Crassostrea gigas) collected from aquatic product markets in three cities (Guangzhou, Zhuhai, and Jiangmen) of Guangdong Province, China, where raw oysters are popular, were investigated. The plate counts of viable bacteria in oysters collected in the three cities were all approximately 2 log colony-forming units/g. High-throughput sequencing analysis of the V3-V4 region of the 16Sribosomal DNA gene showed a high level of microbial diversity in oysters, as evidenced by both alpha and beta diversity analysis. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla of the microorganisms present in these samples. A variety of pathogenic bacteria, including the fatal foodborne pathogen Vibrio vulnificus, were found, and Vibrio was the dominant genus. Additionally, the relationship between other microbial species and pathogenic microorganisms may be mostly symbiotic in oysters. These data provide insights into the microbial communities of retail oysters in the Guangdong region and indicate a considerable risk related to the consumption of raw oysters.
Project description:The Pacific cupped oyster is genetically subdivided into two sister taxa, Crassostrea gigas and Crassostrea angulata, which are in contact in the north-western Pacific. The nature and origin of their genetic and taxonomic differentiation remains controversial due the lack of known reproductive barriers and the high degree of morphologic similarity. In particular, whether the presence of ecological and/or intrinsic isolating mechanisms contributes to species divergence is unknown. The recent co-introduction of both taxa into Europe offers a unique opportunity to test how genetic differentiation is maintained under new environmental and demographic conditions. We generated a pseudochromosome assembly of the Pacific oyster genome using a combination of BAC-end sequencing and scaffold anchoring to a new high-density linkage map. We characterized genome-wide differentiation between C. angulata and C. gigas in both their native and introduced ranges, and showed that gene flow between species has been facilitated by their recent co-introductions in Europe. Nevertheless, patterns of genomic divergence between species remain highly similar in Asia and Europe, suggesting that the environmental transition caused by the co-introduction of the two species did not affect the genomic architecture of their partial reproductive isolation. Increased genetic differentiation was preferentially found in regions of low recombination. Using historical demographic inference, we show that the heterogeneity of differentiation across the genome is well explained by a scenario whereby recent gene flow has eroded past differentiation at different rates across the genome after a period of geographical isolation. Our results thus support the view that low-recombining regions help in maintaining intrinsic genetic differences between the two species.
Project description:Protein content, a vital component determining the nutritional quality of oysters, is unevenly distributed in different parts of oyster. In this study, the spatial distribution (visceral mass, mantle, gill, and adductor) patterns and structural characteristics of proteins, including water-soluble proteins (WSP), salt-soluble proteins (SSP), acid-soluble proteins (ASP) and alkali-soluble proteins (ALSP) of oysters (Crassostrea hongkongensis) were investigated with the amino acid analyzer, circular dichroism spectroscopy (CD), fourier transform infrared spectroscopy (FTIR), and fluorescence spectroscopy. The results showed that oyster proteins were mainly distributed in the visceral mass and mantle. The protein composition was WSP, SSP, ALSP, and ASP in descending order, which conformed to the ideal amino acid pattern. Variations in secondary structure, molecular weight distribution, and thermal denaturation temperatures of the oyster proteins were observed. SSP had wider bands (16-270 kDa) than those of ASP (30-37 kDa) and ALSP (66-270 kDa). Among the four proteins, the SSP of the mantle showed the highest thermal stability (87.4 °C), while ALSP of the adductor muscle had the lowest the lowest the peak denaturation temperature (Tm) (53.8 °C). The proportions of secondary structures in oyster proteins were different, with a higher proportion of solid protein β-folds, and the exposure of aromatic amino acid residues and disulfide bonds and the microenvironment in which they were located were also different.