Correction: Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway.
Correction: Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway.
Project description:Activating transcription factor 3 (ATF-3), a cyclic AMP-dependent transcription factor, has been shown to play a regulatory role in melanoma, although its function during tumor progression remains unclear. Here, we demonstrate that ATF-3 exhibits tumor suppressive function in melanoma. Specifically, ATF-3 nuclear expression was significantly diminished with melanoma progression from nevi to primary to metastatic patient melanomas, correlating low expression with poor prognosis. Significantly low expression of ATF-3 was also found in cultured human metastatic melanoma cell lines. Importantly, overexpression of ATF-3 in metastatic melanoma cell lines significantly inhibited cell growth, migration, and invasion in vitro; as well as abrogated tumor growth in a human melanoma xenograft mouse model in vivo. RNA sequencing analysis revealed downregulation of ERK and AKT pathways and upregulation in apoptotic-related genes in ATF-3 overexpressed melanoma cell lines, which was further validated by Western-blot analysis. In summary, this study demonstrated that diminished ATF-3 expression is associated with melanoma virulence and thus provides a potential target for novel therapies and prognostic biomarker applications.
Project description:BackgroundFoetal anaemia and umbilical vein thrombosis are rare pregnancy complications that can increase the risk of perinatal adverse events, which, in severe cases, can lead to foetal death. During pregnancy, umbilical vein varix (UVV) commonly occurs in the intra-abdominal part of the umbilical vein and is associated with an increased risk of foetal anaemia and umbilical vein thrombosis. However, UVV occurring in the extra-abdominal part of the umbilical vein is rare, especially when accompanied by thrombosis. In this case report, we describe a rare case of an extensive extra-abdominal umbilical vein varix (EAUVV), which ultimately resulted in foetal death due to umbilical vein thrombosis.Case presentationIn this report, we describe a rare case of an extensive EAUVV that was discovered at 25 weeks and 3 days of gestation. During the examination, there were no abnormalities in foetal haemodynamics. The estimated weight of the foetus was only 709 g. In addition to refusing to be hospitalized, the patient refused close monitoring of the foetus. As a result, we were limited to choosing an expectant therapy. The foetus died 2 weeks after diagnosis and was confirmed to have EAUVV with thrombosis after the induction of labour.ConclusionIn the case of EAUVV, lesions are extremely rare, and it is very easy for thrombosis to form, which may result in the death of the child. When determining the next step in the treatment of the condition, the degree of UVV, possible complications, gestational age, foetal haemodynamics, and other relevant factors are strongly connected to the clinical therapy decision, and these factors should be considered comprehensively when making a clinical decision. We recommend close monitoring with hospital admission (to facilities capable of handling extremely preterm foetuses) after variability in delivery for worsening haemodynamic status.
Project description:17β-estradiol (E2) has been shown to have beneficial effects on the cardiovascular system. We previously demonstrated that E2 increases striatin levels and inhibits migration in vascular smooth muscle cells. The objective of the present study was to investigate the effects of E2 on the regulation of striatin expression in human umbilical vein endothelial cells (HUVECs). We demonstrated that E2 increased striatin protein expression in a dose- and time-dependent manner in HUVECs. Pretreatment with ICI 182780 or the phosphatidylinositol-3 kinase inhibitor, wortmannin, abolished E2-mediated upregulation of striatin protein expression. Treatment with E2 resulted in Akt phosphorylation in a time-dependent manner. Moreover, silencing striatin significantly inhibited HUVEC migration, while striatin overexpression significantly promoted HUVEC migration. Finally, E2 enhanced HUVEC migration, which was inhibited by silencing striatin. In conclusion, our results demonstrated that E2-mediated upregulation of striatin promotes cell migration in HUVECs.
Project description:BackgroundLuteolin (LUT) is a flavonoid found in vegetables and fruits that has diverse functions. Doxorubicin (DOX) is an anthracycline antibiotic that is frequently used for the treatment of various cancers. Unfortunately, the clinical efficacy of DOX is limited by its dose-related cardiotoxicity. In this study, we aimed to investigate the potential mechanism through which LUT attenuates cardiotoxicity in vivo.MethodsWe evaluated the body weight, heart weight, electrocardiogram, and pathological changes before and after administration of LUT. Moreover, the effects of LUT (50 mg/kg in the low dose group, 100 mg/kg in the high dose group) on biochemical parameters (brain natriuretic peptide, creatine kinase MB, cardiac troponin T, and dehydrogenation of lactate enzyme) and oxidative stress parameters (malondialdehyde and superoxide dismutase) were studied in the sera of cardiotoxicity model rats. We also identified the apoptotic mediators whose expression was induced by LUT by quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) evaluation. In addition, we used network analysis to predict DOX-induced cardiotoxicity and protection afforded by LUT. Western blotting was used to detect the expression of associated proteins.ResultsLUT significantly improved DOX-induced cardiotoxicity in a dose-dependent fashion. LUT ameliorated DOX-induced weight loss and heart weight changes, as well as changes in biochemical parameters and oxidative stress parameters in heart injury model rats. LUT's protective effect was observed via regulation of the apoptotic markers Bcl-2, Bax, and caspase-3 mRNA and protein expression levels. Network analysis showed that the AKT/Bcl-2 signalling pathway was activated; specifically, the PH domain leucine-rich repeats protein phosphatase 1 (phlpp1) was involved in the AKT/Bcl-2 signal pathway. LUT inhibited the activity of phlpp1 leading to positive regulation of the AKT/Bcl-2 pathway, which attenuated doxorubicin-induced cardiotoxicity.ConclusionsThese results demonstrate that LUT exerted protective effects against DOX-induced cardiotoxicity in vivo by alleviating oxidative stress, suppressing phlpp1 activity, and activating the AKT/Bcl-2 signalling pathway.
Project description:BackgroundThe requirement of promyelocytic leukaemia protein (PML) in interferon (IFN)-induced cell apoptosis is well-established. However, the exact mechanisms by which the multiple isoforms of PML protein participate in this process remain not well-understood. We previously demonstrated that PML isoform II (PML-II) positively regulates induced gene expression during a type I IFN response and evaluate here how PML-II contributes to IFNα-induced cell death.MethodsHeLa cells were transiently depleted of PML-II by siRNA treatment and the response of these cells to treatment with IFNα assessed by molecular assays of mRNA and proteins associated with IFN and apoptosis responses.ResultsIn HeLa cells, death during IFNα stimulation was reduced by prior PML-II depletion. PML-II removal also considerably decreased the induced expression of pro-apoptotic ISGs such as ISG54 (IFIT2), and substantially impaired or prevented expression of PUMA and TRAIL, proteins that are associated with the intrinsic and extrinsic apoptotic pathways respectively. Thirdly, PML-II depletion enhanced ERK and AKT pro-survival signaling activation suggesting that PML-II normally suppresses signaling via these pathways, and that lack of PML-II hence led to greater than normal activation of AKT signaling upon IFNα stimulation and consequently increased resistance to IFNα-induced apoptosis.ConclusionsThe positive contribution of PML-II to the expression of various IFNα-induced pro-apoptotic proteins and its inhibition of pro-survival signaling together provide a mechanistic explanation for reduced apoptosis under conditions of PML deficiency and may account for at least part of the role of PML as a tumor suppressor gene. Video Abstract.
Project description:In this study, we investigated the protective effects of gastrodin (Gas) against homocysteine-induced human umbilical vein endothelial cell (HUVEC) injury and the role of the phosphoinositide 3-kinase (PI3K)/threonine kinase 1 (Akt)/endothelial nitric oxide synthase (eNOS) and NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathways. We stimulated cells with homocysteine (1 mmol/L, 24 hours) and tested the effects of gastrodin (200-800 μg/mL) on cell viability and the production of malondialdehyde (MDA), lactate dehydrogenase (LDH) and reactive oxygen species (ROS). Then, Nrf2 distribution in the cytoplasm and nucleus as well as the expression of enzymes downstream of Nrf2 was determined. Furthermore, we analysed the expression of bax, bcl-2 and cleaved caspase3, and assessed the involvement of the PI3K/Akt/eNOS pathway by Western blots. Finally, we tested the vasoactive effect of gastrodin in thoracic aortic rings. The results showed that gastrodin decreased MDA, LDH and ROS production and increased cell viability, NO production and relaxation of thoracic aortic rings. Moreover, the protective effects of Gas on NO production and relaxation of thoracic aortic rings were blocked by L-NAME but enhanced by Cav-1 knockdown, and MK-2206 treatment abolished the effect of Gas on the ROS. In addition, treatment with gastrodin increased Nrf2 nuclear translocation, thus enhancing the expression of downstream enzymes. Finally, gastrodin increased the expression of PI3K, p-Akt, and eNOS and decreased Cav-1 protein expression. In conclusion, our study suggested that gastrodin may protect HUVECs from homocysteine-induced injury, and the PI3K/Akt/eNOS and Nrf2/ARE pathways may be responsible for the efficacy of gastrodin.
Project description:The increasing burden of diabetes in low and middle‑income countries is attributable to both genetic and epigenetic factors. Environmental‑ and lifestyle‑associated changes are also considered to be important contributors to this disease. The resultant co‑morbidities arising from micro‑and macrovascular changes in diabetes are difficult to manage and are an economic burden. However, very little is known about the molecular mechanisms that drive this phenotype. The present study aimed to investigate the role of sirtuin 1 (SIRT1)‑ and transcription box‑3 (TBX‑3)‑mediated regulation of endothelial dysfunction, given the significance of SIRT1 in glucose metabolism and the role of TBX‑3 in the maintenance of cellular proliferation, senescence and apoptosis. Following the recruitment of adult patients with and without diabetes, both SIRT1 and TBX‑3 expression was confirmed to be present in the sera of the patients with diabetes and the patients without diabetes; however, both SIRT1 and TBX‑3 expression levels were higher in the sera of the patients with diabetes. Human umbilical vein endothelial cells (HUVECs) were further used for in vitro studies. Using TBX‑3 and SIRT1 knockdown models, the cellular responses to proliferation, migration, invasion and tube formation were investigated using an MTS, cell cycle analysis, wound healing, Transwell and tube formation assay, respectively. Western blotting was also used to determine the downstream signaling pathways involved. The genetic knockdown of TBX‑3 in hyperglycemic conditions significantly decreased the cellular proliferation, migration, invasion and angiogenesis of HUVECs. It was subsequently identified that TBX‑3 mediated its effects through the activation of AKT and vascular endothelial growth factor (VEGF) signaling. However, the genetic knockdown of SIRT1 in the presence of TBX‑3 overexpression and glucose failed to activate the AKT and VEGF signaling pathways. In conclusion, the results of the present study suggested that SIRT1 may positively regulate TBX‑3 in endothelial cells, therefore, SIRT1 and/or TBX‑3 may serve as potential novel biomarkers for disease progression.
Project description:Blueberries are rich in antioxidant anthocyanins. The hypotensive effects of blueberry anthocyanins in endothelial cells was investigated here. Pretreatment with blueberry anthocyanin extract, malvidin, malvidin-3-glucoside, and malvidin-3-galactoside significantly ameliorated high-glucose-induced damage by enhancing endogenous antioxidant superoxide dismutase (SOD) and heme oxygenase-1 (HO-1), lowering reactive oxygen species (ROS) generation and NADPH oxidase isoform 4 (NOX4) expression, and increasing the cell vitalities. They also effectively induced a vasodilatory effect by increasing the vasodilator nitric oxide (NO) and its promoters endothelial NO synthase (eNOS) and peroxisome proliferator-activated receptor-? (PPAR?) levels as well as by decreasing the vasoconstrictor angiotensin-converting enzyme (ACE), xanthine oxidase-1 (XO-1), and low-density lipoprotein (LDL) levels. The activation of phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and the breakdown of protein kinase C zeta (PKC?) pathway were involved in the bioactivities. The results indicated blueberry anthocyanins protected endothelial function against high-glucose (HG) injury via antioxidant and vasodilatory mechanisms, which could be promising molecules as a hypotensive nutraceutical for diabetes patients.
Project description:Overexpression of ETS‑homologous factor (EHF) in non‑small cell lung cancer (NSCLC) is associated with poor patient prognosis. To explore the mechanism of the effect of EHF in NSCLC, EHF expression was examined in NSCLC and its role in cell proliferation, invasion, cell cycle, and apoptosis of NSCLC cells was evaluated by overexpressing EHF and/or knocking down EHF expression in NSCLC cells in vitro and in cancer cell grafted mice in vivo. The results revealed that the knockdown of EHF expression in NSCLC with siRNA significantly inhibited cell proliferation and invasion, arrested the cell cycle at the G0/G1 phase, and induced apoptosis, whereas overexpression of EHF in NSCLC promoted cell proliferation, tumor growth, and cancer cell migration in vitro. The in vivo experiments demonstrated that siRNA‑mediated downregulation of EHF expression in NSCLC cells significantly suppressed tumor growth in xenografted nude mice as compared to cancer progression in the mice grafted with NSCLC cells transfected with non‑specific control siRNA. The biochemical analyses revealed that EHF promoted NSCLC growth by regulating the transcription of Erb‑B2 receptor tyrosine kinase 2/3 (ERBB2, ERBB3) and mesenchymal‑epithelial transition (MET) factor tyrosine kinase receptors and modulating the AKT and ERK signaling pathways in the NSCLC cells. The present findings indicated that EHF could be used as a prognostic marker for NSCLC, and tyrosine kinase receptors of ERBB2, ERBB3 and MET could be drug targets for NSCLC treatment.
Project description:Endothelial cells are very sensitive to microgravity and the morphological and functional changes in endothelial cells are believed to be at the basis of weightlessness-induced cardiovascular deconditioning. It has been shown that the proliferation, migration, and morphological differentiation of endothelial cells play critical roles in angiogenesis. However, the influence of microgravity on the ability of endothelial cells to foster angiogenesis remains to be explored in detail. In the present study, we used a clinostat to simulate microgravity, and we observed tube formation, migration, and expression of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC-C). Specific inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) were added to the culture medium and gravity-induced changes in the pathways that mediate angiogenesis were investigated. After 24 h of exposure to simulated microgravity, HUVEC-C tube formation and migration were significantly promoted.This was reversed by co-incubation with the specific inhibitor of N-nitro-L-arginine methyl ester hydrochloride (eNOS). Immunofluorescence assay, RT-PCR, and Western blot analysis demonstrated that eNOS expression in the HUVEC-C was significantly elevated after simulated microgravity exhibition. Ultrastructure observation via transmission electron microscope showed the number of caveolae organelles in the membrane of HUVEC-C to be significantly reduced. This was correlated with enhanced eNOS activity. Western blot analysis then showed that phosphorylation of eNOS and serine/threonine kinase (Akt) were both up-regulated after exposure to simulated microgravity. However, the specific inhibitor of PI3K not only significantly downregulated the expression of phosphorylated Akt, but also downregulated the phosphorylation of eNOS. This suggested that the PI3K-Akt signal pathway might participate in modulating the activity of eNOS. In conclusion, the present study indicates that 24 h of exposure to simulated microgravity promote angiogenesis among HUVEC-C and that this process is mediated through the PI3K-Akt-eNOS signal pathway.