Unknown

Dataset Information

0

A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being.


ABSTRACT: A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

SUBMITTER: Ravindran S 

PROVIDER: S-EPMC4352501 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being.

Ravindran Sindhu S   Jambek Asral Bahari AB   Muthusamy Hariharan H   Neoh Siew-Chin SC  

Computational and mathematical methods in medicine 20150222


A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functio  ...[more]

Similar Datasets

| S-EPMC10066294 | biostudies-literature
| S-EPMC3494932 | biostudies-literature
| S-EPMC7363631 | biostudies-literature
| S-EPMC3661712 | biostudies-literature
| S-EPMC8588582 | biostudies-literature
| S-EPMC11339688 | biostudies-literature
| S-EPMC6457544 | biostudies-literature
| S-EPMC7654083 | biostudies-literature
| S-EPMC4113881 | biostudies-literature
| S-EPMC8700569 | biostudies-literature