Unknown

Dataset Information

0

The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems.


ABSTRACT: The linear theory for rotating compressible convection in a plane layer geometry is presented for the astrophysically relevant case of low Prandtl number gases. When the rotation rate of the system is large, the flow remains geostrophically balanced for all stratification levels investigated and the classical (i.e. incompressible) asymptotic scaling laws for the critical parameters are recovered. For sufficiently small Prandtl numbers, increasing stratification tends to further destabilize the fluid layer, decrease the critical wavenumber and increase the oscillation frequency of the convective instability. In combination, these effects increase the relative magnitude of the time derivative of the density perturbation contained in the conservation of mass equation to non-negligible levels; the resulting convective instabilities occur in the form of compressional quasi-geostrophic oscillations. We find that the anelastic equations, which neglect this term, cannot capture these instabilities and possess spuriously growing eigenmodes in the rapidly rotating, low Prandtl number regime. It is shown that the Mach number for rapidly rotating compressible convection is intrinsically small for all background states, regardless of the departure from adiabaticity.

SUBMITTER: Calkins MA 

PROVIDER: S-EPMC4353051 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems.

Calkins Michael A MA   Julien Keith K   Marti Philippe P  

Proceedings. Mathematical, physical, and engineering sciences 20150301 2175


The linear theory for rotating compressible convection in a plane layer geometry is presented for the astrophysically relevant case of low Prandtl number gases. When the rotation rate of the system is large, the flow remains geostrophically balanced for all stratification levels investigated and the classical (i.e. incompressible) asymptotic scaling laws for the critical parameters are recovered. For sufficiently small Prandtl numbers, increasing stratification tends to further destabilize the f  ...[more]

Similar Datasets

| S-EPMC4649631 | biostudies-other
| S-EPMC7322008 | biostudies-literature
| S-EPMC9285093 | biostudies-literature
| S-EPMC6304030 | biostudies-literature
| S-EPMC8179040 | biostudies-literature
| S-EPMC6544622 | biostudies-literature
| S-EPMC8458392 | biostudies-literature
| S-EPMC6283899 | biostudies-literature
| S-EPMC8549980 | biostudies-literature
| S-EPMC5869616 | biostudies-literature