Unknown

Dataset Information

0

Combinational reasoning of quantitative fuzzy topological relations for simple fuzzy regions.


ABSTRACT: In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models.

SUBMITTER: Liu B 

PROVIDER: S-EPMC4361350 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combinational reasoning of quantitative fuzzy topological relations for simple fuzzy regions.

Liu Bo B   Li Dajun D   Xia Yuanping Y   Ruan Jian J   Xu Lili L   Wu Huanyi H  

PloS one 20150316 3


In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy to  ...[more]

Similar Datasets

| S-EPMC4217329 | biostudies-other
| S-EPMC3414446 | biostudies-literature
2021-04-26 | GSE173156 | GEO
2021-04-26 | GSE173152 | GEO
2021-04-26 | GSE173149 | GEO
| S-EPMC4604268 | biostudies-literature
| S-EPMC3942403 | biostudies-other
| S-EPMC5749968 | biostudies-literature
| S-EPMC3694667 | biostudies-literature
| S-EPMC3794914 | biostudies-literature