Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment.
Ontology highlight
ABSTRACT: A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au₅₆₁±₁₄ ), ~3.2 nm (Au₉₂₃± ₂₂ ), and ~4.3 nm (Au₂₀₅₇±₄₅) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2-5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy.
SUBMITTER: Arkill KP
PROVIDER: S-EPMC4363841 | biostudies-literature | 2015 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA