Project description:Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.
Project description:SARS-CoV-2 variants are emerging worldwide, and monitoring them is key in providing early warnings. Here, we summarize the different analytical approaches currently used to study the dissemination of SARS-CoV-2 variants in wastewater and discuss their advantages and disadvantages. We also provide preliminary results of two sensitive and cost-effective approaches: variant-specific reverse transcription-nested PCR assays and a nonvariant-specific amplicon deep sequencing strategy that targets three key regions of the viral spike protein. Next-generation sequencing approaches enable the simultaneous detection of signature mutations of different variants of concern in a single assay and may be the best option to explore the real picture at a particular time. Targeted PCR approaches focused on specific signature mutations will need continuous updating but are sensitive and cost-effective.
Project description:MET protooncogene (MET) alterations are known driver oncogenes in NSCLC. Since the identification of MET as a potential therapeutic target, extensive clinical trials have been performed. As a result, MET-targeted therapies, including MET tyrosine kinase inhibitors, monoclonal antibodies, and MET antibody-drug conjugates now play important roles in the standard treatment of MET-altered NSCLC; they have considerably improved the outcomes of patients with tumors that harbor MET oncogenic drivers. Although clinical agents are currently available and numerous other options are in development, particular challenges in the field require attention. For example, the therapeutic efficacy of each drug remains unsatisfactory, and concomitantly, the resistance mechanisms are not fully understood. Thus, there is an urgent need for optimal drug sequencing and combinations, along with a thorough understanding of treatment resistance. In this review, we describe the current landscape of pertinent clinical trials focusing on MET-targeted strategies and discuss future developmental directions in this rapidly expanding field.
Project description:ObjectiveTo explore the pathway to diagnosis of type 1 diabetes (T1D) in children from the perspective of the child, family and general practitioner (GP).DesignQualitative interview study.ParticipantsParents of children aged 1 month to 16 years diagnosed with new onset T1D within the previous 3 months, children over 6 years diagnosed with new onset T1D within the previous 3 months and GPs who saw those children prior to diagnosis.SettingChildren and parents were identified and recruited from two hospitals within the East of England.ResultsThe parents of 16 children (2-16 years) were interviewed. The total interval from onset of symptoms to diagnosis ranged from 6 to 127 days. The appraisal interval was the longest for almost all children and the diagnostic interval the shortest. Even with some knowledge of T1D, it took many parents several weeks of a complex cyclical and iterative decision-making process and often a physical trigger, such as weight loss, to decide to consult a healthcare professional. By that stage, many had already made or suspected the diagnosis of T1D themselves. Five GPs were interviewed. They felt that the main challenges to diagnosing T1D in children were the rarity of the condition coupled with how well most of the children appeared, and the difficulty in obtaining urine or blood samples from children.ConclusionsThis study highlights the difficulties for parents and GPs in recognising the early symptoms of T1D. It suggests that future interventions should be targeted at parents in the appraisal interval and include the importance of timely presentation to a healthcare professional and the differences between types 1 and 2 diabetes. Primary care physicians should also take parental concerns seriously and do urine dipstick tests during the consultation for children with symptoms of T1D.
Project description:Understanding microRNA (miRNA) functions has been hampered by major difficulties in identifying their biological target(s). Currently, the main limitation is the lack of a suitable strategy to identify biologically relevant targets among a high number of putative targets. Here we provide a proof of concept of successful de novo (i.e. without prior knowledge of its identity) miRNA phenotypic target (i.e. target whose de-repression contributes to the phenotypic outcomes) identification from RNA-seq data. Using the medaka mir-202 knock-out (KO) model in which inactivation leads to a major organism-level reproductive phenotype, including reduced egg production, we introduced novel criteria including limited fold-change in KO and low interindividual variability in gene expression to reduce the list of 2853 putative targets to a short list of 5. We selected tead3b, a member of the evolutionarily-conserved Hippo pathway, known to regulate ovarian functions, due to its remarkably strong and evolutionarily conserved binding affinity for miR-202-5p. Deleting the miR-202-5p binding site in the 3' UTR of tead3b, but not of other Hippo pathway members sav1 and vgll4b, triggered a reduced egg production phenotype. This is one of the few successful examples of de novo functional assignment of a miRNA phenotypic target in vivo in vertebrates.
Project description:Conifers often occur along steep gradients of diverse climates throughout their natural ranges, which is expected to result in spatially varying selection to local climate conditions. However, signals of climatic adaptation can often be confounded, because unraveled clines covary with signals caused by neutral evolutionary processes such as gene flow and genetic drift. Consequently, our understanding of how selection and gene flow have shaped phenotypic and genotypic differentiation in trees is still limited.A 40-year-old common garden experiment comprising 16 Douglas-fir (Pseudotsuga menziesii) provenances from a north-to-south gradient of approx. 1,000 km was analyzed, and genomic information was obtained from exome capture, which resulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. We used a restrictive and conservative filtering approach, which permitted us to include only SNPs and individuals in environmental association analysis (EAA) that were free of potentially confounding effects (LD, relatedness among trees, heterozygosity deficiency, and deviations from Hardy-Weinberg proportions). We used four conceptually different genome scan methods based on FST outlier detection and gene-environment association in order to disentangle truly adaptive SNPs from neutral SNPs.We found that a relatively small proportion of the exome showed a truly adaptive signal (0.01%-0.17%) when population substructuring and multiple testing was accounted for. Nevertheless, the unraveled SNP candidates showed significant relationships with climate at provenance origins, which strongly suggests that they have featured adaptation in Douglas-fir along a climatic gradient. Two SNPs were independently found by three of the employed algorithms, and one of them is in close proximity to an annotated gene involved in circadian clock control and photoperiodism as was similarly found in Populus balsamifera. Synthesis. We conclude that despite neutral evolutionary processes, phenotypic and genomic signals of adaptation to climate are responsible for differentiation, which in particular explain disparity between the well-known coastal and interior varieties of Douglas-fir.
Project description:Non-Small-Cell Lung Cancer (NSCLC) can harbour different MET alterations, such as MET overexpression (MET OE), MET gene amplification (MET AMP), or MET gene mutations. Retrospective studies of surgical series of patients with MET-dysregulated NSCLC have shown worse clinical outcomes irrespective of the type of specific MET gene alteration. On the other hand, earlier attempts failed to identify the 'druggable' molecular gene driver until the discovery of MET exon 14 skipping mutations (METex14). METex14 are rare and amount to around 3% of all NSCLCs. Patients with METex14 NSCLC attain modest results when they are treated with immune checkpoint inhibitors (ICIs). New selective MET inhibitors (MET-Is) showed a long-lasting clinical benefit in patients with METex14 NSCLC and modest activity in patients with MET AMP NSCLC. Ongoing clinical trials are investigating new small molecule tyrosine kinase inhibitors, bispecific antibodies, or antibodies drug conjugate (ADCs). This review focuses on the prognostic role of MET, the summary of pivotal clinical trials of selective MET-Is with a focus on resistance mechanisms. The last section is addressed to future developments and challenges.