Project description:Ewing Sarcoma is an aggressive malignancy of bone and soft tissue affecting children and young adults. Ewing Sarcoma is driven by EWS/Ets fusion oncoproteins, which cause widespread alterations in gene expression in the cell. Dysregulation of receptor tyrosine kinase signaling, particularly involving IGF-1R, also plays an important role in Ewing Sarcoma pathogenesis. However, the basis of this dysregulation, including the relative contribution of EWS/Ets-dependent and independent mechanisms, is not well understood. In the present study, we identify variable expression of two modifiers of PI3K signaling activity, PIK3R3 and PTEN, in Ewing Sarcoma, and examine the consequences of this on PI3K pathway regulation and oncogenic phenotypes. Our findings indicate that PIK3R3 plays a growth-promotional role in Ewing Sarcoma, but suggest that this role is not strictly dependent on regulation of PI3K pathway activity. We further show that expression of PTEN, a well-established, potent tumor suppressor, is lost in a subset of Ewing Sarcomas, and that this loss strongly correlates with high baseline PI3K pathway activity in cell lines. In support of functional importance of PTEN loss in Ewing Sarcoma, we show that re-introduction of PTEN into two different PTEN-negative Ewing Sarcoma cell lines results in downregulation of PI3K pathway activity, and sensitization to the IGF-1R small molecule inhibitor OSI-906. Our findings also suggest that PTEN levels may contribute to sensitivity of Ewing Sarcoma cells to the microtubule inhibitor vincristine, a relevant chemotherapeutic agent in this cancer. Our studies thus identify PIK3R3 and PTEN as modifiers of oncogenic phenotypes in Ewing Sarcoma, with potential clinical implications.
Project description:Ewing Family Tumors (Ewing Sarcoma and peripheral Primitive Neuroectodermal Tumor) are common bone and soft tissue malignancies of childhood, adolescence and young adulthood. Chromosomal translocation in these tumors produces fusion oncogenes of the EWS/ETS class, with EWS/FLI1 being by far the most common. EWS/ETS chimera are the only well established driver mutations in these tumors and they function as aberrant transcription factors. Understanding the downstream genes whose expression is modified has been a central approach to the study of these tumors. FOXM1 is a proliferation associated transcription factor which has increasingly been found to play a role in the pathogenesis of a wide range of human cancers. Here we demonstrate that FOXM1 is expressed in Ewing primary tumors and cell lines. Reduction in FOXM1 expression in Ewing cell lines results in diminished potential for anchorage independent growth. FOXM1 expression is enhanced by EWS/FLI1, though, unlike other tumor systems, it is not driven by expression of the EWS/FLI1 target GLI1. Thiostrepton is a compound known to inhibit FOXM1 by direct binding. We show that Thiostrepton diminishes FOXM1 expression in Ewing cell lines and this reduction reduces cell viability through an apoptotic mechanism. FOXM1 is involved in Ewing tumor pathogenesis and may prove to be a useful therapeutic target in Ewing tumors.
Project description:Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F-ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.
Project description:The core cohesin subunit STAG2 is recurrently mutated in Ewing sarcoma but its biological role is less clear. Here, we demonstrate that cohesin complexes containing STAG2 occupy enhancer and polycomb repressive complex (PRC2)-marked regulatory regions. Genetic suppression of STAG2 leads to a compensatory increase in cohesin-STAG1 complexes, but not in enhancer-rich regions, and results in reprogramming of cis-chromatin interactions. Strikingly, in STAG2 knockout cells the oncogenic genetic program driven by the fusion transcription factor EWS/FLI1 was highly perturbed, in part due to altered enhancer-promoter contacts. Moreover, loss of STAG2 also disrupted PRC2-mediated regulation of gene expression. Combined, these transcriptional changes converged to modulate EWS/FLI1, migratory, and neurodevelopmental programs. Finally, consistent with clinical observations, functional studies revealed that loss of STAG2 enhances the metastatic potential of Ewing sarcoma xenografts. Our findings demonstrate that STAG2 mutations can alter chromatin architecture and transcriptional programs to promote an aggressive cancer phenotype.
Project description:Ewing sarcoma (EWS) is an aggressive bone and soft tissue tumor of children and young adults in which the principal driver is a fusion gene, EWSR1-FLI1. Although the essential role of EWSR1-FLI1 protein in the regulation of oncogenesis, survival, and tumor progression processes has been described in-depth, little is known about the regulation of chimeric fusion-gene expression. Here, we demonstrate that the active nuclear HDAC6 in EWS modulates the acetylation status of specificity protein 1 (SP1), consequently regulating the SP1/P300 activator complex binding to EWSR1 and EWSR1-FLI1 promoters. Selective inhibition of HDAC6 impairs binding of the activator complex SP1/P300, thereby inducing EWSR1-FLI1 downregulation and significantly reducing its oncogenic functions. In addition, sensitivity of EWS cell lines to HDAC6 inhibition is higher than other tumor or non-tumor cell lines. High expression of HDAC6 in primary EWS tumor samples from patients correlates with a poor prognosis in two independent series accounting 279 patients. Notably, a combination treatment of a selective HDAC6 and doxorubicin (a DNA damage agent used as a standard therapy of EWS patients) dramatically inhibits tumor growth in two EWS murine xenograft models. These results could lead to suitable and promising therapeutic alternatives for patients with EWS.
Project description:Ewing Sarcoma is a rare bone and soft tissue malignancy affecting children and young adults. Chromosomal translocations in this cancer produce fusion oncogenes as characteristic molecular signatures of the disease. The most common case is the translocation t (11; 22) (q24;q12) which yields the EWS-Fli1 chimeric transcription factor. Finding a way to directly target EWS-Fli1 remains a central therapeutic approach to eradicate this aggressive cancer. Here we demonstrate that treating Ewing Sarcoma cells with JQ1(+), a BET bromodomain inhibitor, represses directly EWS-Fli1 transcription as well as its transcriptional program. Moreover, the Chromatin Immuno Precipitation experiments demonstrate for the first time that these results are a consequence of the depletion of BRD4, one of the BET bromodomains protein from the EWS-Fli1 promoter. In vitro, JQ1(+) treatment reduces the cell viability, impairs the cell clonogenic and the migratory abilities, and induces a G1-phase blockage as well as a time- and a dose-dependent apoptosis. Furthermore, in our in vivo model, we observed a tumor burden delay, an inhibition of the global vascularization and an increase of the mice overall survival. Taken together, our data indicate that inhibiting the BET bromodomains interferes with EWS-FLi1 transcription and could be a promising strategy in the Ewing tumors context.
Project description:Adamantinoma-like Ewing sarcoma (ALES) has traditionally been considered a variant of Ewing sarcoma because it generally harbors EWSR1::FLI1 fusions despite showing diffuse positivity for keratins and p40. However, it has become increasingly recognized that different tumors can have identical translocations, including shared fusions between carcinomas and sarcomas, raising questions as to whether ALES might represent a separate entity. Using methylation profiling, we further explored the relationship between Ewing sarcoma and ALES. The archives of multiple institutions were searched for candidate cases of ALES. DNA methylation profiling was performed and results were compared to corresponding data from conventional Ewing sarcoma. Twelve cases of ALES (5 previously reported) were identified in 10 men and 2 women (aged 20-72 years; median age, 41.5 years). Cases included tumors arising in the parotid gland (3), sinonasal cavity (2), submandibular gland (2), thyroid gland (1), neck (1), gingiva (1), hypopharynx (1), and mandible (1). Histologic review consistently showed sheets and nests of basaloid cells within a fibromyxoid or hyalinized stroma. All tumors were positive for at least 1 keratin and CD99 expression, whereas all 10 cases tested were positive for p63 or p40; S100 protein expression was noted in 2 cases. Cases harbored either EWSR1::FLI1 fusions (n = 6), FUS::FLI1 fusions (n = 1), and/or EWSR1 rearrangements (n = 6). Methylation profiling was successful in 11/12 cases evaluated. Unsupervised clustering and dimensionality reduction (Uniform Manifold Approximation and Projection) of DNA methylation data revealed a distinct methylation cluster for all 11 cases, including the tumor with the FUS::FLI1 fusion, which clearly segregated them from the conventional Ewing sarcoma. Follow-up (n = 11, 1-154 months) revealed that 4 patients experienced recurrence and 6 developed metastatic disease. ALES demonstrates a distinct methylation signature from conventional Ewing sarcoma. This finding adds to the distinctive immunoprofile of ALES, suggesting that these 2 tumors should be considered distinct entities rather than histologic extremes of the same disease.
Project description:Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 - a physiological driver of proliferation of osteo-chondrogenic progenitors - by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol.Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy.
Project description:Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma.
Project description:Rhabdomyosarcoma (RMS) is a malignant tumor that represents the most common form of pediatric soft tissue sarcoma. It arises from mesenchymal origin and forms part of the group of small round blue cell tumors of childhood. It has a constant annual incidence of 4.5 cases per 1,000,000 children. The known histological diagnosis of the two major subtypes (embryonal and alveolar) has been recently enhanced by tumor biological markers and molecular differentiation diagnostic tools that have improved not only the updated classification based on risk stratification, but also the treatment approach based on the clinical group. Ewing sarcoma (ES) is a round cell tumor, highly malignant and poorly differentiated that is currently the second most common malignant bone tumor in children. In rare instances, it develops from an extraskeletal origin, classified as extraosseous Ewing sarcoma (EES). We provide an updated, evidence-based and comprehensive review of the molecular diagnosis, clinical and diagnostic approach and a multidisciplinary medical and surgical management according to the latest standard of care for the treatment of pediatric RMS and EES.