Unknown

Dataset Information

0

Emergence of reconfigurable wires and spinners via dynamic self-assembly.


ABSTRACT: Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregation of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.

SUBMITTER: Kokot G 

PROVIDER: S-EPMC4374141 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Emergence of reconfigurable wires and spinners via dynamic self-assembly.

Kokot Gasper G   Piet David D   Whitesides George M GM   Aranson Igor S IS   Snezhko Alexey A  

Scientific reports 20150326


Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-partic  ...[more]

Similar Datasets

| S-EPMC5610313 | biostudies-literature
| S-EPMC9329472 | biostudies-literature
| S-EPMC8782843 | biostudies-literature
| S-EPMC5724263 | biostudies-literature
| S-EPMC5977288 | biostudies-literature
| S-EPMC4455094 | biostudies-literature
| S-EPMC3299540 | biostudies-literature
| S-EPMC6050331 | biostudies-literature
| S-EPMC7525563 | biostudies-literature
| S-EPMC4931027 | biostudies-literature