Predictors of muscle protein synthesis after severe pediatric burns.
Ontology highlight
ABSTRACT: Following a major burn, skeletal muscle protein synthesis rate increases but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months after injury and to identify predictors that influence this response.A total of 87 children with 40% or greater total body surface area (TBSA) burned were included. Patients participated in stable isotope infusion studies at 1, 2, and approximately 4 weeks after burn and at 6, 12, and 24 months after injury to determine skeletal muscle protein fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics.Patients (8 ± 6 years) had large (62, 51-72% TBSA) and deep (47% ± 21% TBSA third degree) burns. Muscle protein fractional synthesis rate was elevated throughout the first 12 months after burn compared with established values from healthy young adults. Muscle protein fractional synthesis rate was lower in boys, in children older than 3 years, and when burns were greater than 80% TBSA.Muscle protein synthesis is elevated for at least 1 year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiologic response to burn trauma. Muscle protein synthesis is highly affected by sex, age, and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn patients.Prognostic study, level III.
SUBMITTER: Diaz EC
PROVIDER: S-EPMC4376006 | biostudies-literature | 2015 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA